Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Day to day variability and non-stationarity caused by changes in subject motivation, learning and behavior pose a challenge in using local field potentials (LFP) for practical Brain Computer Interfaces. Pattern recognition algorithms require that the features possess little to no variation from the training to test data. As such models developed on one day fail to represent the characteristics on the other day. This paper provides a solution in the form of adaptive spatial features. We propose an algorithm to capture the local spatial variability of LFP patterns and provide accurate long-term decoding. This algorithm achieved more than 95% decoding of eight movement directions two weeks after its initial training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6943920 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!