Controlled drug release is crucial for targeted implant smart drug delivery system (DDS). In this work a chitosan film loaded with green food coloring is fabricated to demonstrate the concepts of drug release using electrical stimulus. A simulation model is also developed to explain the physical phenomena of this drug release using finite element method (FEM). It is found that drug delivery is increased with applied electric field to the electrodes on chitosan film. The AC electrokinetic force generated from electrical excitation is a factor influencing this phenomenon. Several controlled and stimuli experiments are conducted with different electric fields and frequencies. The spectral absorbance of treated solution after the experiment is measured using a spectrophotometer to quantify the dye release. It is verified statistically with 99% level of significance that the amount of dye release has increased with applied electric field. Thus this work has shown that application of electric field can be a potential candidate for controlled DDS using chitosan film.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2014.6943867DOI Listing

Publication Analysis

Top Keywords

chitosan film
16
drug release
12
electric field
12
electrical stimulus
8
drug delivery
8
increased applied
8
applied electric
8
dye release
8
drug
5
release
5

Similar Publications

Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate.

View Article and Find Full Text PDF

Biodegradable food packaging has gained significant attention owing to environmental concerns. Chitosan (CS), a natural polysaccharide, is popular in packaging films, however, its high hydrophilicity, brittleness, and low mechanical strength limit its use. To improve CS film performance, kafirin (Kaf), glycerol (GE), and tannic acid (TA) were added to create biocomposite films.

View Article and Find Full Text PDF

Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.

View Article and Find Full Text PDF

This study aimed to estimate the effects of chitosan/ corn starch (CH/ CS equal 62:38) film in combination with nettle essential oil nanoemulsions (0.41 wt% NEONEs) and starch nanocrystals (6 wt% SNCs) on the microbial and qualitative characteristics of the fillets during refrigeration storage (4 ± 1 °C). The fillets were covered by biopolymeric films (CH/CS, CH/CS/SNCs, CH/CS/ NEONEs, CH/CS/SNCs/NEONEs).

View Article and Find Full Text PDF

Urinary catheters serve as critical medical devices in clinical practice. However, the currently used urinary catheters lack efficient antibacterial and lubricating properties, often leading to discomfort with patients and even severe urinary infections. Herein, a new strategy of supramolecular assembly and disassembly of chitosan (Cs) is developed that enables efficient antibacterial lubricous and biodegradable hydrogel urinary catheters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!