A multivariate analysis method, orthogonal partial least squares to latent structures (OPLS), was used to discriminate Alzheimer's disease (AD), early and late mild cognitive impairment (EMCI and LMCI) from cognitively normal control (CN) using MRI and PET measures. FreeSurfer 5.1 generated 271 MRI features including 49 subcortical volumes, 68 cortical volumes, 68 cortical thicknesses, 70 surface areas and 16 hippocampus subfields. Subjects with all aforementioned MRI measures passing quality control and valid Fludeoxyglucose (18F) (FDG) and Florbetapir (18F) PET scans were selected from ADNI database, resulting in a total of 524 participants (137 CN, 214 EMCI, 103 LMCI and 70 AD) for the study. Altogether 286 features including 15 significant PET uptake features (7 for FDG and 8 for AV-45) were utilized for OPLS analysis. Predictive power was evaluated by Q2(Y), a quantifier of the statistical significance for class separation. The results show that MRI features (Q2(Y) =0.645), and PET features (Q2(Y) = 0.636) has comparable predictive power in separating AD from CN, and MRI features are better predictor of LMCI (Q2(Y) = 0.282) than PET (Q2(Y) = 0.294). Combination of PET and MRI has the most predictive power for LMCI and AD with Q2(Y) of 0.294 and 0.721, respectively. While for EMCI, cortical thickness was found to be the best predictor with a Q2(Y) of 0.108, suggesting cortical thickness may be the first structural change ahead of others and should be prioritized in prediction of very mild cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6943774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!