High-level spinal cord injury (SCI) survivors face every day two related problems: recovering motor skills and regaining functional independence. Body machine interfaces (BoMIs) empower people with sever motor disabilities with the ability to control an external device, but they also offer the opportunity to focus concurrently on achieving rehabilitative goals. In this study we developed a portable, and low-cost BoMI that addresses both problems. The BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer monitor. By controlling the cursor, the user can perform functional tasks, such as entering text and playing games. This framework also allows the mapping between the body and the cursor space to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change the behavior of our SCI subject, who initially used almost exclusively his less impaired degrees of freedom - on the left side - for controlling the BoMI. At the end of the few practice sessions he had restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom involved in the control of the interface. This is the first proof of concept that our BoMI can be used to control assistive devices and reach specific rehabilitative goals simultaneously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386866PMC
http://dx.doi.org/10.1109/EMBC.2014.6943612DOI Listing

Publication Analysis

Top Keywords

body machine
8
machine interfaces
8
rehabilitative goals
8
degrees freedom
8
left side
8
body
5
interfaces neuromotor
4
neuromotor rehabilitation
4
rehabilitation case
4
case study
4

Similar Publications

Using integrative bioinformatics approaches and machine-learning strategies to identify potential signatures for atrial fibrillation.

Int J Cardiol Heart Vasc

February 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Atrial fibrillation (AF) is the most common tachyarrhythmia and seriously affects human health. Key targets of AF bioinformatics analysis can help to better understand the pathogenesis of AF and develop therapeutic targets. The left atrial appendage tissue of 20 patients with AF and 10 patients with sinus rhythm were collected for sequencing, and the expression data of the atrial tissue were obtained.

View Article and Find Full Text PDF

Introduction: Delirium, frequently experienced by ischemic stroke patients, is one of the most common neuropsychiatric syndromes reported in the Intensive Care Unit (ICU). Stroke patients with delirium have a high mortality rate and lengthy hospitalization. For these reasons, early diagnosis of delirium in the ICU is critical for better patient prognosis.

View Article and Find Full Text PDF

Brachycephalic breeds suffer from respiratory distress known as brachycephalic obstructive airway syndrome (BOAS) and the multiple comorbidities associated with it. Targeted breeding toward a more BOAS-free phenotype requires accurate and least invasive detection of BOAS severity grades that are accessible and accepted by the breeders and kennel clubs. This study aimed to compare the-outcome of morphometric anatomical examination with functional tests such as exercise tests and plethysmography for the detection of BOAS severity in a group of 84 French Bulldogs.

View Article and Find Full Text PDF

Systems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data.

View Article and Find Full Text PDF

The Keiser 10-rep leg press test protocol employs short inter-repetition rest intervals (2-38 s), raising concerns as to whether athletes perform optimally. The aim of this study was to compare the results of the standard Keiser protocol with an identical protocol modified to include a significantly longer inter-repetition rest intervals and to evaluate whether these effects differed between men and women. A total of 30 athletes (age 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!