A ventricular assist device (VAD) is a device with mechanical pumps implanted adjacent to the patient's native heart to support the blood flow. Mechanical circulatory support using VADs has been an essential therapeutic tool for patients with severe heart failure waiting for a heart transplant in clinical site. Adaptive control of VADs that automatically adjust the pump output with changes in a patient state is one of the important approaches for enhanced therapeutic efficacy, prevention of complications and quality of life improvement. However adaptively controlling a VAD in the realistic situation would be difficult because it is necessary to model the whole including the VAD and the cardiovascular dynamics. To solve this problem, we propose an application of attractor selection algorithm using stochastic behavior to a VAD control system. In this study, we sought to investigate whether this proposed method can be used to adaptively control of a VAD in the simple case of a continuous flow VAD. The flow rate control algorithm was constructed on the basis of a stochastically searching algorithm as one example of application. The validity of the constructed control algorithm was examined in a mock circuit. As a result, in response to a low-flow state with the different causes, the flow rate of the pump reached a target value with self adaptive behavior without designing the detailed control rule based on the experience or the model of the control target.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2014.6943586DOI Listing

Publication Analysis

Top Keywords

algorithm stochastic
8
control
8
ventricular assist
8
assist device
8
flow rate
8
control algorithm
8
vad
6
algorithm
5
application search
4
search algorithm
4

Similar Publications

Three-Dimensional Scanning Virtual Aperture Imaging with Metasurface.

Sensors (Basel)

January 2025

Huawei Technologies Co., Ltd., Chengdu 610000, China.

Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual aperture imaging system.

View Article and Find Full Text PDF

Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification.

View Article and Find Full Text PDF

This study aimed to predict and fit the nonlinear dynamic grip force of the human upper limb using surface electromyographic (sEMG) signals. The research employed a time-series-based neural network, NARX, to establish a mapping relationship between the electromyographic signals of the forearm muscle groups and dynamic grip force. Three-channel electromyographic signal acquisition equipment and a grip force sensor were used to record muscle signals and grip force data of the subjects under specific dynamic force conditions.

View Article and Find Full Text PDF

Using machine learning to predict patients with polycystic ovary disease in Chinese women.

Taiwan J Obstet Gynecol

January 2025

Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan. Electronic address:

Objective: With an estimated global frequency ranging from5 % to 21 %, polycystic ovary syndrome (PCOS) is one of the most prevalent hormonal disorders. There are many factors found to be related to PCOS. However, most of these researches used traditional methods such as multiple logistic regression (LR).

View Article and Find Full Text PDF

Random walks on scale-free flowers with stochastic resetting.

Chaos

January 2025

School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!