Chemosensors play important roles in cation and anion recognition in biological, industrial, and environmental processes. Although many efforts have been made to develop artificial fluorescent receptors for Cu(2+) and S(2-), their applications in the detection in bulk solutions are limited. In this work, we report a novel fluorescence chemosensor (NL) based on the 7-nitrobenz-2-oxa-1,3-diazole (NBD) fluorophore for the quantification of Cu(2+) and S(2-) in single intact cells. NL specifically binds to Cu(2+) in the presence of other competing cations, and evident changes in UV-vis and fluorescence spectra in HEPES buffer are noticed. Based on the displacement approach, the selective sense S(2-) with the in situ generated NL-Cu(2+) ensemble gives a remarkable recovery of fluorescence and UV-vis absorption spectra. The detection limits of NL for Cu(2+) and NL-Cu(2+) for S(2-) were estimated to be 1.6 nM and 0.17 μM, respectively. NL and the resultant complex NL-Cu(2+) exhibit low cytotoxicity and cell-membrane permeability, which makes them capable of Cu(2+) and S(2-) imaging and quantification in living MDA-MB-231 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4ob02178aDOI Listing

Publication Analysis

Top Keywords

cu2+ s2-
12
cu2+
5
s2-
5
nbd-based fluorescent
4
fluorescent chemosensor
4
chemosensor selective
4
selective quantification
4
quantification copper
4
copper sulfide
4
sulfide aqueous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!