Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense.

PLoS Genet

Department of Plant Sciences, University of California, Davis, Davis, California, United States of America; DynaMo Center of Excellence, University of Copenhagen, Frederiksberg, Denmark.

Published: January 2015

Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287608PMC
http://dx.doi.org/10.1371/journal.pgen.1004779DOI Listing

Publication Analysis

Top Keywords

stochastic variation
44
genetic diversity
16
variation
13
variation phenotypic
12
stochastic
11
genetic
8
genetic variation
8
variation metabolome
8
control stochastic
8
defense chemistry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!