Cycle on Wheels: Is APP Key to the AppBp1 Pathway?

Austin Alzheimers Parkinsons Dis

Department of Pathology, University of Toledo Health Sciences Campus, USA.

Published: January 2014

Alzheimer's disease (AD) is the gradual loss of the cognitive function due to neuronal death. Currently no therapy is available to slow down, reverse or prevent the disease. Here we analyze the existing data in literature and hypothesize that the physiological function of the Amyloid Precursor Protein (APP) is activating the AppBp1 pathway and this function is gradually lost during the progression of AD pathogenesis. The AppBp1 pathway, also known as the neddylation pathway, activates the small ubiquitin-like protein nedd8, which covalently modifies and switches on Cullin ubiquitin ligases, which are essential in the turnover of cell cycle proteins. Here we discuss how APP may activate the AppBp1 pathway, which downregulates cell cycle markers and protects genome integrity. More investigation of this mechanism-driven hypothesis may provide insights into disease treatment and prevention strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283775PMC

Publication Analysis

Top Keywords

appbp1 pathway
12
cell cycle
8
cycle wheels
4
wheels app
4
app key
4
appbp1
4
key appbp1
4
appbp1 pathway?
4
pathway? alzheimer's
4
alzheimer's disease
4

Similar Publications

Background: Amyloid Precursor Protein (APP)-Binding Protein 1 (APP-BP1) is a crucial regulator of many key signaling pathways and functions mainly as a scaffold protein to enhance molecular interactions and facilitate catalytic reactions. The interaction of APP-BP1 with Amyloid Precursor Protein (APP) plays a role in cell cycle transit control, which determines the mechanism behind the loss of cell cycle regulation in Alzheimer's Disease (AD). In contrast, neddylation, a posttranslational modification mediated by conjugation of ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8), is activated by a heterodimer composed of APP-BP1 and NEDD8-activating enzyme E1 catalytic subunit (Uba3).

View Article and Find Full Text PDF

Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Reveals Potential Evolution Process for Activation of Ubiquitin-related Pathways.

Sci Rep

July 2018

Department of Bioengineering, Center for Bioengineering Research, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, USA.

Despite the similar enzyme cascade in the Ubiquitin and Ubiquitin-like peptide(Ubl) conjugation, the involvement of single or heterodimer E1 activating enzyme has been a mystery. Here, by using a quantitative Förster Resonance Energy Transfer (FRET) technology, aided with Analysis of Electrostatic Similarities Of Proteins (AESOP) computational framework, we elucidate in detail the functional properties of each subunit of the E1 heterodimer activating-enzyme for NEDD8, UBA3 and APPBP1. In contrast to SUMO activation, which requires both subunits of its E1 heterodimer AOS1-Uba2 for its activation, NEDD8 activation requires only one of two E1 subunits, UBA3.

View Article and Find Full Text PDF

Neddylation requires glycyl-tRNA synthetase to protect activated E2.

Nat Struct Mol Biol

August 2016

Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.

Neddylation is a post-translational modification that controls the cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme in protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not knockdown of a different tRNA synthetase, decreased the global level of neddylation and caused cell-cycle abnormality.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the gradual loss of the cognitive function due to neuronal death. Currently no therapy is available to slow down, reverse or prevent the disease. Here we analyze the existing data in literature and hypothesize that the physiological function of the Amyloid Precursor Protein (APP) is activating the AppBp1 pathway and this function is gradually lost during the progression of AD pathogenesis.

View Article and Find Full Text PDF

A metal-based inhibitor of NEDD8-activating enzyme.

PLoS One

May 2013

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.

A cyclometallated rhodium(III) complex [Rh(ppy)(2)(dppz)](+) (1) (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine) has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE). The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!