The potential benefits and risks of genetically engineered gene-drive systems for replacing wild pest strains with more benign strains must be assessed prior to any field releases. We develop a computer simulation model to assess the feasibility of using engineered underdominance constructs to drive transgenes into age- and spatially structured mosquito populations. Our practical criterion for success is the achievement of a transgene frequency of at least 0.80 within 3 years of release. The impacts of a number of parameters that may affect the success of gene-drive, such as the release area, release age, density-dependent larval survival, fitness cost of the engineered genes, and migration probability of adults, are examined. Results show that patchy release generally requires the release of fewer engineered insects to achieve success than central release. When the fitness cost is very low, central release covering 25% of the total area can be more effective than a completely uniform release over the whole area. This study demonstrates that to determine the best method of spatial release, and the total number of engineered insects that must be released, it is important to take into account the age and sex of the released insects and spatial structure of the population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352527PMC
http://dx.doi.org/10.1111/j.1752-4571.2010.00153.xDOI Listing

Publication Analysis

Top Keywords

release
9
spatial structure
8
release area
8
fitness cost
8
engineered insects
8
central release
8
engineered
5
gene-drive insect
4
insect populations
4
populations age
4

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Introduction: The 2022 Inflation Reduction Act (IRA) is expected to result in lower drug prices for Medicare beneficiaries in the United States (US). The Centers for Medicare & Medicaid Services (CMS) released the most recent draft guidance for the Medicare Drug Price Negotiation (DPN) program in May 2024.

Areas Covered: In August 2023, the list of 10 drugs selected for the DPN were published and the first round of negotiations are now complete.

View Article and Find Full Text PDF

Summary: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Non-linear Iterative Partial Least Squares (NIPALS). We applied nipalsMCIA to both bulk and single cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.

View Article and Find Full Text PDF

Innovative capsulation and microencapsulation of plant hormones: a strategy to combat plant pathogens.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

One of the prevailing trends in contemporary agriculture is the application of biological control. Nevertheless, several reports suggest that biocontrol bacteria exhibit poor survival rates in host plants. Consequently, the concept of shielding biological control agents by encapsulating them in outer coatings has gained popularity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!