Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping 'safeguards'-engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome-to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10(-12). The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330353 | PMC |
http://dx.doi.org/10.1093/nar/gku1378 | DOI Listing |
Mayo Clin Proc
January 2025
Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:
Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.
Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.
Sci Rep
January 2025
School of Information and Electronic Engineering and Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Zhejiang University of Science and Technology, No. 318, Hangzhou, Zhejiang, China.
Skin cancer is common and deadly, hence a correct diagnosis at an early age is essential. Effective therapy depends on precise classification of the several skin cancer forms, each with special traits. Because dermoscopy and other sophisticated imaging methods produce detailed lesion images, early detection has been enhanced.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step towards development of salt-tolerant crops. Of particular interest are mechanisms that are present in wild crop relatives, as they may have greater stress tolerance than crop species.
View Article and Find Full Text PDFBiomedicine (Taipei)
December 2024
Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
Background: One of the most challenging cancers is triple-negative breast cancer, which is subdivided into many molecular subtypes. Due to the high degree of heterogeneity, the role of precision medicine remains challenging. With the use of machine learning (ML)-guided gene selection, the differential gene expression analysis can be optimized, and eventually, the process of precision medicine can see great advancement through biomarker discovery.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture, Jilin Agricultural University, Changchun 130118, China.
There is an urgent need for the cryopreservation of dormant buds to conserve the genetic resources of woody plants, particularly fruit trees, as this method is less time-consuming and relatively inexpensive. In the present study, three different cryopreservation protocols were tested on dormant buds from three varieties of Rupr. The explants were collected between November 2017 and March 2018.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!