Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A-E) were identified among 856 isolates. Of these, 12% were strongly pathogenic on cotton, 10% were weakly pathogenic and designated wild Fov, while 78% were nonpathogenic. In contrast to the occurrence of pathogenic isolates in all five lineages in soils associated with wild Gossypium, in cotton growing areas only three lineages (A, B, E) occurred and all pathogenic isolates belonged to two subgroups in lineage A. One of these contained VCG 01111 isolates while the other contained VCG 01112 isolates. Sequence analyses of translation elongation factor-1α, mitochondrial small subunit rDNA, nitrate reductase and phosphate permease confirmed that Australian Fov isolates were more closely related to lineage A isolates of native F. oxysporum than to Fov races 1-8 found overseas. These results strongly support a local evolutionary origin for Fov in Australian cotton growing regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352512PMC
http://dx.doi.org/10.1111/j.1752-4571.2010.00139.xDOI Listing

Publication Analysis

Top Keywords

cotton growing
12
fusarium oxysporum
8
oxysporum vasinfectum
8
vcg 01111
8
vcg 01112
8
pathogenic isolates
8
contained vcg
8
isolates
7
fov
5
local origin
4

Similar Publications

Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton.

Physiol Plant

January 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.

Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported.

View Article and Find Full Text PDF

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

Marine litter, particularly microplastics, is a growing threat to the Mediterranean Sea, impacting biodiversity and ecosystem health. However, most studies conducted in the Mediterranean Sea have focused on monitoring of only specific environmental compartments, and rarely have highlighted the overall impacts affecting an area. Therefore, using a new multi-compartment monitoring approach and a standardized methodology, this study investigates the abundance, distribution, composition and impact of marine litter on beaches, surface waters, fish and mussels in a coastal area of Tuscany (Italy).

View Article and Find Full Text PDF

Climate change and water scarcity bring significant challenges to agricultural systems in the Mediterranean region. Novel methods are required to rapidly monitor the water stress of the crop to avoid qualitative losses of agricultural products. This study aimed to predict the stem water potential of cotton ( L.

View Article and Find Full Text PDF

The yellow fever mosquito, Aedes aegypti L., known for transmitting viruses causing yellow fever, dengue, chikungunya, and Zika fever, presents a substantial risk to global human health. The development of insecticide resistance in disease vectors has become a significant problem in Ae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!