In recreational fisheries, a correlation has been established between fishing-induced selection pressures and the metabolic traits of individual fish. This study used a population of largemouth bass (Micropterus salmoides) with lines of low vulnerability fish (LVF) and high vulnerability fish (HVF) that were previously established through artificial truncation selection experiments. The main objective was to evaluate if differential vulnerability to angling was correlated with growth, energetics and nutritional condition during the sub-adult stage. Absolute growth rate was found to be between 9% and 17% higher for LVF compared with HVF over a 6-month period in three experimental ponds. The gonadosomatic index in females was lower for LVF compared with HVF in one experimental pond. No significant differences in energy stores (measured using body constituent analysis) were observed between LVF and HVF. In addition, both groups were consuming the same prey items as evidenced by stomach content analysis. The inherent reasons behind differential vulnerability to angling are complex, and selection for these opposing phenotypes appears to select for differing growth rates, although the driving factors remain unclear. These traits are important from a life-history perspective, and alterations to their frequency as a result of fishing-induced selection could alter fish population structure. These findings further emphasize the need to incorporate evolutionary principles into fisheries management activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352488 | PMC |
http://dx.doi.org/10.1111/j.1752-4571.2009.00078.x | DOI Listing |
BMC Vet Res
May 2024
Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
J Anim Ecol
September 2023
ForestGEO, Smithsonian Tropical Research Institute, Panama, Republic of Panama.
Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species.
View Article and Find Full Text PDFConserv Physiol
March 2023
Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada.
Recreational fishing has the potential to cause evolutionary change in fish populations; a phenomenon referred to as fisheries-induced evolution. However, detecting and quantifying the magnitude of recreational fisheries selection in the wild is inherently difficult, largely owing to the challenges associated with variation in environmental factors and, in most cases, the absence of pre-selection or baseline data against which comparisons can be made. However, exploration of recreational fisheries selection in wild populations may be possible in systems where fisheries exclusion zones exist.
View Article and Find Full Text PDFNaturwissenschaften
February 2023
Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo, Hokkaido, 060-0810, Japan.
Parasites generally increase host vulnerability to predators via host manipulation for trophic transmission and reduction of host activities. Predators also select prey depending on the parasite infection status. Despite such parasites' roles in prey-predator interactions in wild animals, how parasites affect human hunting probability and resource consumption remains unknown.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2023
Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China. Electronic address:
Locking compression plates (LCP) with asymmetrical holes and polyaxial screws are effective for treating mid-femoral fractures, but are prone to failure in cases of bone nonunion. To understand the failure mechanism of the LCP, this study assessed the material composition, microhardness, metallography, fractography and biomechanical performance of a retrieved LCP used for treating a bone fracture of AO type 32-A1. For the biomechanical assessment, a finite element surgical model implanted with the intact fixation-plate system was constructed to understand the stresses and structural stiffness on the construct.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!