Objective: To understand the genotypic characteristics and the neutralizing antibody levels of Japanese encephalitis virus (JEV) and Japanese encephalitis (JE) in both vector mosquitoes and in healthy people of Zhejiang province.

Methods: Virus was isolated from mosquitos sampled from the Monitoring Stations located in Xianju county during 2012 to 2013. Phylogenetic and homological studies were carried out on the E gene. A total of 1 263 blood specimens from 642 healthy people were collected before and after the seasons of JE epidemics. JEV neutralizing antibody was detected by the micro-neutralization test.

Results: Twenty-five JEV strains were isolated from a total of 11 650 mosquitoes. The identity of nucleotide appeared as 87.8%-99.7% both from 2012 to 2013 and from 1982 to 2010 while as 87.7%-88.0% with vaccine strain SA14-14-2, in Zhejiang. The phylogeny tree of E gene indicated that the newly isolated virus belonged to genotype I but no mutation of amino acid sequence coding conformational epitope was identified in the envelop protein. Both positive rates and the geometric mean titer (GMT) of neutralizing antibody in healthy people were 31.5%-42.0% and 1 : 2.56-1 : 3.53 in Xianju county, during 2012 and 2013, respectively. Both of the two positive rates (χ(2)≤1.76, P > 0.05) and the two GMTs (u≤0.64, P > 0.5) for antibodies pre or post the epidemic season did not show significant differences.

Conclusion: JEV isolated in Xianju during 2012 and 2013 belonged to genotype I. The positive rates of JEV neutralizing antibody from healthy people in Xianju were less than 42.0%, which showed no significant differendes pre or post JE epidemic season.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neutralizing antibody
16
healthy people
16
2012 2013
16
japanese encephalitis
12
positive rates
12
genotypic characteristics
8
encephalitis virus
8
xianju county
8
county 2012
8
jev neutralizing
8

Similar Publications

Dengue virus (DENV) is a rapidly expanding infectious disease threat that causes an estimated 100 million symptomatic infections every year. A barrier to preventing DENV infections with traditional vaccines or prophylactic monoclonal antibody (mAb) therapies is the phenomenon of Antibody-Dependent Enhancement (ADE), wherein sub-neutralizing levels of DENV-specific IgG antibodies can enhance infection and pathogenesis rather than providing protection from disease. Fortunately, IgG is not the only antibody isotype capable of binding and neutralizing DENV, as DENV-specific IgA1 isotype mAbs can bind and neutralize DENV while without exhibiting any ADE activity.

View Article and Find Full Text PDF

Enhanced immunogenicity of a BoHV-1 gG-/tk- vaccine.

Vaccine

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:

Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.

View Article and Find Full Text PDF

Enhancing vaccine half-life as a novel strategy for improving immune response durability of subunit vaccines.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored.

View Article and Find Full Text PDF

Introduction: Rhesus macaques have long been a focus of research for understanding immune responses to human pathogens due to their close phylogenetic relationship with humans. As rhesus macaque antibody germlines show high degrees of polymorphism, the spectrum of database-covered genes expressed in individual macaques remains to be determined.

Methods: Here, four rhesus macaques infected with SHIV became a study of interest because they developed broadly neutralizing antibodies against HIV-1.

View Article and Find Full Text PDF

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!