Polymorphisms in the MTHFR gene are associated with breast cancer risk and prognosis in a Chinese population.

Tumour Biol

Department of Breast Surgery, Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, 200437, China.

Published: May 2015

Breast cancer is the most common cancer affecting women in China and the world. Folate supplementation is proven to be effective in reducing the risk of breast cancer or improving its prognosis. Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme involved in folate metabolism and DNA synthesis. This study aims to examine whether single nucleotide polymorphisms (SNP) in the MTHFR gene are associated with risk and survival of breast cancer and serum folate levels in healthy controls. We genotyped nine tagging SNPs in the MTHFR gene in a case-control study, including 560 breast cancer cases and 560 healthy controls in China. We found that TT genotype of rs1801133 had significant increased risk of breast cancer [adjusted odds ratio (OR) = 1.60, 95 % confidence interval (CI) 1.12-2.28] compared with CC genotype, and CC genotype of rs9651118 conferred significant reduced risk of breast cancer (adjusted OR = 0.65, 95 % CI 0.45-0.95) compared to TT genotype. Haplotype analysis also showed that MTHFR CACCAA and AGTCAC haplotypes (rs12121543-rs13306553-rs9651118-rs1801133-rs4846048-rs1801131) had significant reduced risk of breast cancer (adjusted OR = 0.70, 95 % CI 0.58-0.86; adjusted OR = 0.57, 95 % CI 0.40-0.80) compared with CATTAA haplotype. Besides, MTHFR rs9651118 CC genotype was significantly associated with survival in breast cancer cases (adjusted hazard ratio (HR) = 0.63, 95 % CI 0.40-0.99). But none of the SNPs in the MTHFR gene was associated with serum folate level in healthy controls. These findings suggest that variants in the MTHFR gene may influence the risk and prognosis of breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-014-3016-4DOI Listing

Publication Analysis

Top Keywords

breast cancer
40
mthfr gene
20
risk breast
16
gene associated
12
healthy controls
12
cancer
11
breast
10
risk prognosis
8
survival breast
8
serum folate
8

Similar Publications

Management of nausea and vomiting induced by antibody-drug conjugates.

Breast Cancer

January 2025

Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!