Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways.

Front Plant Sci

Plant Metabolism Group, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren, Germany ; Institute of Biochemistry and Biology, University of Potsdam Potsdam, Germany.

Published: January 2015

In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin-proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270169PMC
http://dx.doi.org/10.3389/fpls.2014.00736DOI Listing

Publication Analysis

Top Keywords

type-iii effector
8
effector proteins
8
cellular processes
8
host cells
8
interactions xanthomonas
4
xanthomonas type-iii
4
proteins
4
proteins plant
4
plant ubiquitin
4
ubiquitin ubiquitin-like
4

Similar Publications

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

In critically ill patients, the occurrence of multidrug-resistant infection is a significant concern, given its ability to acquire multidrug-resistant, form biofilms and secrete toxic effectors. In Brazil, limited data are available regarding the prevalence of dissemination, and the impact of the type III secretion system (T3SS) on toxin production and biofilm formation in clinical isolates of . This study investigates the dissemination of virulent harbouring the and genes, the presence of T3SS genes and their biofilm-forming capability.

View Article and Find Full Text PDF

The type III secretion system (T3SS) is a nano-machine that allows Gram-negative bacteria to alter eukaryotic host biology by directly delivering effector proteins from the bacterial cytoplasm. Protein delivery based on the bacterial T3SS has been widely used in research in biology. This review explores recent advancements in the structure and function of the T3SS.

View Article and Find Full Text PDF

Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.

View Article and Find Full Text PDF

Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!