Purpose: Chronic obstructive pulmonary disease (COPD) is predicted to become the third most common cause of death and the fifth most common cause of disability in the world by 2020. Recently, variants in the hypoxia-inducible factor 1α (HIF1A), cholinergic receptor, neuronal nicotinic, alpha polypeptide-5, and iron-responsive element-binding protein 2 gene (IREB2) genes were found to be associated with COPD. This study aims to identify whether the variations in these genes are related to COPD in the Hainan population of the People's Republic of China.

Patients And Methods: We genotyped 12 single nucleotide polymorphisms in a case-control study with 200 COPD cases and 401 controls from Hainan, People's Republic of China. Odds ratios and 95% confidence intervals were estimated using the chi-squared (χ(2)) test, genetic model analysis, haplotype analysis, and stratification analysis.

Results: In the genetic model analysis, we found that the genotype T/T of rs13180 of IREB2 decreased the COPD risk by 0.52-fold (P=0.025). But in the further stratification analysis, we failed to find the association between the selected single nucleotide polymorphisms with COPD risk in Han population. In addition, the haplotype analysis of HIF1A gene also was not found to be the possible haplotype associated with COPD risk.

Conclusion: Our results support that IREB2 rs13180 is associated with COPD in Hainan population. And this is the first time the HIF1A polymorphisms in COPD in a Chinese population has been reported, although we failed to find any significant result.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279605PMC
http://dx.doi.org/10.2147/COPD.S73042DOI Listing

Publication Analysis

Top Keywords

hainan population
12
associated copd
12
copd
9
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
case-control study
8
copd hainan
8
people's republic
8
single nucleotide
8

Similar Publications

Background: The skin microbiota, a complex community of microorganisms residing on the skin, plays a crucial role in maintaining skin health and overall homeostasis. Recent research has suggested that alterations in the composition and function of the skin microbiota may influence the aging process. However, the causal relationships between specific skin microbiota and biological aging remain unclear.

View Article and Find Full Text PDF

Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway.

Cell Rep

January 2025

Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:

Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.

View Article and Find Full Text PDF

Introduction: The prognosis of relapsed or refractory mature T- and natural killer (NK)-cell lymphoma remains dismal. Novel agents are urgently needed to improve the outcomes for this population.

Methods: In this phase 2, multicenter, open-label, single-arm study (NCT03776279), the authors report the efficacy and safety of liposomal mitoxantrone (Lipo-MIT) monotherapy in patients with relapsed or refractory mature T- and NK-cell lymphoma.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) can lead to persistent symptoms, sequelae, and other medical complications that may last for weeks or months after recovery. The aim of the study is to assess the prevalence and risk factors of long COVID-19 persisting for 2 years in Hainan Province, China, to aid in its recognition, prevention, and treatment. Between July and August 2022, 960 individuals with confirmed SARS-CoV-2 infection in Hainan, China, were recruited.

View Article and Find Full Text PDF

The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!