Background: Diabetic nephropathy is the most common cause of end-stage renal disease. Emerging evidences indicate that many mechanistic pathways including apoptosis play an important role in the pathogenesis and progression of macrovascular and microvascular complications of diabetes mellitus. The aim of the present study is to show the effects of grape seed extract (GSE) on oxidative stress and apoptosis in the kidney of streptozotocin-induced diabetic rats.
Materials And Methods: The study included control group, diabetic group without treatment and diabetic group treated with GSE (n=7) group. GSE was given orally (100 mg/kg/day) for six weeks. Following parameters were evaluated; oxidative stress index, caspase 1, IL1-alpha, caspase 2, IL1-beta, BCL2-associated agonist of cell death (BAD), X-linked inhibitor of apoptosis (XIAP), DNA fragmentation factor, alpha subunit and beta bubunit (DFFA, DFFB), BH3 interacting domain death agonist (BID), caspase 6, Bcl2-like 1 (BCL-XL), caspase 8, tumor necrosis factor receptor superfamily, member 1 b (TNFRSF1B) and IAP-binding mitochondrial protein (DIABLO).
Results: Oxidative stress index levels were significantly increased in the kidney of diabetic group without treatment compared to control group, and decreased in diabetic+GSE group compared to diabetic group without treatment. In the kidney of diabetic group without treatment, caspase 1, IL-1 alpha, BAD, DFFA, DFFB and caspase-6 gene expressions were significantly higher compared to control group. In diabetic+GSE group caspase 1, caspase 2, XIAP, DFFA, BID, BCL-XL and TNFRSF1B genes were significantly decreased compared to control group.
Conclusions: Grape seed reduces oxidative stress and apoptosis gene expression suggesting the protective effect on diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/0886022X.2014.991996 | DOI Listing |
Biomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei General Hospital, Shijiazhuang City, Hebei Province, P.R. China.
Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.
Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.
Proc Natl Acad Sci U S A
February 2025
Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158.
The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .
View Article and Find Full Text PDFPLoS Biol
January 2025
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!