Photoelectron spectrum and dynamics of the uracil cation.

J Phys Chem A

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.

Published: February 2015

The photoelectron spectrum of uracil and the molecular dynamics of its radical cation are investigated using the multiconfigurational time-dependent Hartree (MCTDH) method. For this aim, the vibronic coupling model Hamiltonian is used including up to ten important a' modes. Moreover, to account for coupling through conical intersections between states of different symmetry in the system, coupling constants of two a″ modes are taken into account. The parameters used in the model are obtained by fitting to ab inito data obtained with extensive EOM-IP-CCSD calculations. The first four cationic states were investigated, which are either of A″ (hole in a π orbital) or A' (hole in a nO orbital) symmetry. The results of the wavepacket propagations were used to calculate the corresponding photoelectron spectrum and compare to the experimental spectrum. The MCTDH simulations reproduce the experimental spectrum well. The dynamics starting from the D2 and D3 ionic states show a fast relaxation to the cationic ground state often involving direct D2-D0 or D3-D1 transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp512221xDOI Listing

Publication Analysis

Top Keywords

photoelectron spectrum
12
modes account
8
hole orbital
8
experimental spectrum
8
spectrum dynamics
4
dynamics uracil
4
uracil cation
4
cation photoelectron
4
spectrum
4
spectrum uracil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!