Because of the limited penetration depth of visible light that generally excites most of the available photosensitizers (PSs), conventional photodynamic therapy (PDT) is limited to the treatment of superficial and flat lesions. Recently, the application of deep penetrating near-infrared (NIR) light excitable upconversion nanoparticles (UCNs) in conjunction with PDT has shown to have clear potential in the treatment of solid tumors due to its ability to penetrate thick tissue. However, various constructs developed so far have certain limitations such as poor or unstable PS loading, reducing their therapeutic efficacy and limiting their application to solution or cell-based studies. In this work, we present a method to fabricate uniform core-shell structured nanoconstruct with a thin layer of photocatalyst or PS-titanium dioxide (TiO2) stably coated on individual UCN core. Our design allows controllable and highly reproducible PS loading, preventing any leakage of PS compared to previously developed nanoconstructs, thus ensuring repeatable PDT results. Further surface modification of the developed nanoconstructs with polyethylene glycol (PEG) rendered them biocompatible, demonstrating good therapeutic efficacy both in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn503450tDOI Listing

Publication Analysis

Top Keywords

upconversion nanoparticles
8
photodynamic therapy
8
therapeutic efficacy
8
developed nanoconstructs
8
titania coated
4
coated upconversion
4
nanoparticles near-infrared
4
near-infrared light
4
light triggered
4
triggered photodynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!