Aldosterone promotes cardiac endothelial cell proliferation in vivo.

J Am Heart Assoc

Inserm U1138, Team 1, 15 rue de l'école de médecine, Paris, France (B.G., A.T., N.F., F.J., S.M.).

Published: January 2015

Background: Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified.

Methods And Results: Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone-regulated genes were involved in cell division. The cardiac Ki-67 index (an index of proliferation) of aldosterone-treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki-67 with vinculin, CD68, α-smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone-induced mineralocorticoid receptor-dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological-specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction).

Conclusions: Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330055PMC
http://dx.doi.org/10.1161/JAHA.114.001266DOI Listing

Publication Analysis

Top Keywords

aldosterone
5
aldosterone promotes
4
promotes cardiac
4
cardiac endothelial
4
endothelial cell
4
cell proliferation
4
proliferation vivo
4
vivo background
4
background experimentally
4
experimentally aldosterone
4

Similar Publications

Audits allow analysis of the delivery of care and the prevalence of diseases. This study investigated kidney diseases' impact on end-stage renal disease (ERSD) in patients younger than 30 years. : This analysis is retrospectively conducted on young dialysis-dependent patients included in the Sicilian Registry of Nephrology, Dialysis and Transplantation Participants.

View Article and Find Full Text PDF

MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool.

J Clin Med

December 2024

Cardio Thoracic and Vascular Department, 'S. Maria alle Scotte Hospital', University of Siena, 53100 Siena, Italy.

Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome.

View Article and Find Full Text PDF

Oxidative Stress in Kidney Injury and Hypertension.

Antioxidants (Basel)

November 2024

Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN.

View Article and Find Full Text PDF

Hypertension remains a global health challenge due to its high prevalence and association with premature morbidity and mortality. Aldosterone, a mineralocorticoid hormone, and its receptor, the mineralocorticoid receptor (MR), are highly implicated in hypertension pathogenesis. Aldosterone synthase is the sole enzyme responsible for producing aldosterone in humans.

View Article and Find Full Text PDF

Primary aldosteronism is characterised by the excessive production of aldosterone, which is a key regulator of salt metabolism, and is the most common cause of secondary hypertension. Studies have investigated the association between primary aldosteronism and genetic alterations, with pathogenic mutations being identified. This includes a glycine-to-arginine substitution at position 151 (G151R) of the G protein-activated inward rectifier potassium (K) channel 4 (GIRK4), which is encoded by the gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!