Gaucher disease (GD) is characterized by glucocerebroside (GC) accumulation due to defective activity of the glucocerebrosidase (GlcCerase) enzyme. Monocytes and macrophages exhibit the highest GlcCerase activity and are most prominently affected by GC engorgement. As GD patients tend to exert various immune system-related changes, this study was designed to investigate potential effects of monocyte dysfunction on these alterations. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of untreated GD patients and healthy volunteers. Monocyte migration capacity towards SDF1α was assessed. The GD patients exhibited reduced numbers of monocytes and decreased capability of SDF1α-dependent monocyte migration. Evaluation of CXCR4, the SDF1α receptor, revealed reduced expression of surface CXCR4 on GD-derived monocytes, despite similar CXCR4 mRNA transcript levels in the monocytes of healthy volunteers and GD patients. Reduction of surface CXCR4 was accompanied by increased intracellular CXCR4 levels in patient monocytes. This elevated intracellular CXCR4 might reflect significantly increased SDF1α concentrations characterizing patients' serum and the lysosomal impairment of GD, resulting in decreased degradation of CXCR4. Different distributions of CXCR4 expression observed in the two groups explain impaired SDF1α-dependent monocyte migration. Reduced numbers and impaired migration capacity of GD-derived monocytes could contribute to abnormal inflammation and GD-associated immune alterations seen in these patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcmd.2014.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!