The photocatalytic degradation of the herbicide sulcotrione (0.05 mM) and its formulated compound Tangenta® in aqueous suspensions of TiO2 Degussa P25 was examined as a function of the different operational parameters. The optimum of the catalyst loading was found to be 2.0 mg mL(-1) under UVA light. In the first stage of the reaction, the photocatalytic degradation of sulcotrione alone and in Tangenta® followed the pseudo-first order kinetics, in which the heterogeneous catalysis proceeds via OH and holes. Further, it can be concluded that degradation rate of sulcotrione alone is about two times higher compared to formulated compound. The results showed that the disappearance of sulcotrione led to the formation of three organic intermediates and ionic byproducts (Cl(-), SO4(2-), acetate and formate), whereas their mineralization was about 90% after 4 h. Tentative photodegradation pathways were proposed and discussed. Also, there was no significant toxicity observed after the irradiation of sulcotrione solution and Tangenta® formulation using TiO2 catalyst on three mammalian cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2014.12.042 | DOI Listing |
Acta Pharm Sin B
December 2024
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
Accurate receptor/ligand binding free energy calculations can greatly accelerate drug discovery by identifying highly potent ligands. By simulating the change from one compound structure to another, the relative binding free energy (RBFE) change can be calculated based on the theoretically rigorous free energy perturbation (FEP) method. However, existing FEP-RBFE approaches may face convergence challenges due to difficulties in simulating non-physical intermediate states, which can lead to increased computational costs to obtain the converged results.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to rapidly identify the chemical components in Dracocephalum moldavica, and UPLC was employed to determine the content of its main components. MS analysis was performed using an electrospray ionization(ESI) source and data were collected in the negative ion mode. By comparing the retention time and mass spectra of reference compounds, and using a self-built compound database and the PubChem database, 68 compounds were identified from D.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Ligustilide, a phthalide compound extracted from Umbelliferae plants such as Angelica sinensis and Ligusticum chuanxiong, has been proven to possess various pharmacological activities, such as anti-inflammatory, anti-tumor, anti-atherosclerosis, anti-ischemic stroke injury, and anti-Alzheimer's disease properties. In recent years, it has shown great potential, particularly in the treatment of locomotor system diseases. Studies have shown that ligustilide has significant therapeutic effects on various locomotor system diseases, including osteoporosis, osteoarthritis, femoral head necrosis, osteosarcoma, and muscle aging and injury.
View Article and Find Full Text PDFJ Dent
January 2025
Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:
Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.
Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!