To unveil genetic variations between the predominant soybean mosaic virus (SMV) strains in China and in the USA, as well as to reveal the potential relevance between the similarity of gene sequences and the virulence of the viruses, we isolated and sequenced the coat protein (CP) gene of Chinese SMV strain SC7 by RT-PCR and compared the SC7 sequence with those of SMV strains from the USA. Analysis is showed that the CP gene of SC7 was 795 nucleotides in length and encoded 265 in amino acids'. The CP gene of SC7 and those of the strains from the USA exhibited 4%-5% nucleotide diversity and 1%-2% diversity amino acids. The conserved amino-acid sequence associated with aphid spread in the USA strains was DAG, and corresponded to DAD in SC7. The virulence of SC7 was greater than that of the SMV strains from the USA. Nevertheless, no clear relationships between sequence similarity of the CP genes from different strains and their virulence on differential hosts were found.

Download full-text PDF

Source

Publication Analysis

Top Keywords

smv strains
16
strains usa
12
coat protein
8
protein gene
8
gene chinese
8
soybean mosaic
8
mosaic virus
8
strain sc7
8
gene sc7
8
sc7
7

Similar Publications

(SMV) represents one of the most devastating viral diseases affecting soybeans worldwide. Among its strains, SMV-SC15 is notable for its virulence, predominance, and widespread occurrence. Rapid and on-site diagnosis is important for controlling the spread of SMV-SC15.

View Article and Find Full Text PDF

The global rise in antimicrobial resistance (AMR) poses a significant public health threat, especially in healthcare settings, where controlling the spread of antimicrobial genes is crucial. While person-to-person transmission remains the primary route for healthcare-associated infections (HAIs), hospital surfaces serve as key reservoirs for antimicrobial-resistant microorganisms. Regular cleaning and disinfection of these surfaces are essential.

View Article and Find Full Text PDF

A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus.

BMC Genomics

June 2024

State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.

Background: Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear.

View Article and Find Full Text PDF

Identification of soybean mosaic virus strain SC7 resistance loci and candidate genes in soybean [Glycine max (L.) Merr.].

Mol Genet Genomics

May 2024

National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.

Soybean [Glycine max (L.) Merr.] is an important legume crop worldwide, which provides abundant plant protein and oil for human beings.

View Article and Find Full Text PDF

GmCYB5-4 inhibit SMV proliferation by targeting P3 protein.

Virology

July 2024

Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and alkaline Land of Dongying Qingdao Agricultural University, China. Electronic address:

Soybean mosaic virus (SMV) is a potyvirus found worldwide in soybean (Glycine max). GmCYB5-4 is a strong candidate interactor of P3. In this study, we comprehensively analyzed the GmCYB5 family in soybeans, including its distribution on chromosomes, promoter analysis, conserved motifs, phylogenetic analysis, and expression patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!