A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. | LitMetric

In China, coal-mining industries are mainly located in the water shortage areas including arid or semiarid areas. Mine wastewater is used for irrigation of agricultural land in these areas. However, few studies have been conducted to address ecological and food safety risks caused by mine wastewater irrigation. In this research, a pot experiment was performed to examine the effects of mine wastewater irrigation on soil enzymes, physiological properties of wheat and potential risks of heavy metal contamination to wheat crop. Plants were subjected to three mine wastewater irrigation treatments: leacheate of coal gangue (T1), coal-washing wastewater (T2) and precipitated coal-washing wastewater (T3). Plants irrigated with well water were taken as the control (CK). The results showed that mine wastewater irrigation caused adverse effects on soil enzymes, physiological properties and grain yield of winter wheat. At anthesis, T1, T2 and T3 treatments significantly reduced the activities of soil enzymes (urease, sucrase and catalase), root activity and net photosynthetic rate of wheat compared to CK. At maturity, grain yield was decreased by 17.8%, 15.4% and 9.8% by T1, T2 and T3, respectively, as compared to that of CK. Importantly, mine wastewater irrigation resulted in accumulation of heavy metals (Cr, Pb, Cu and Zn) in wheat grain. Contents of these heavy metals in grains of winter wheat subjected to mine wastewater irrigation were significantly higher than those in CK. The comprehensive contamination indexes of wheat grain in T1, T2 and T3 all reached high pollution level. Our results showed that mine wastewater irrigation significantly increased the pollution risk of heavy metals, thus unsuitable for crop irrigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2014.12.031DOI Listing

Publication Analysis

Top Keywords

mine wastewater
36
wastewater irrigation
36
soil enzymes
16
enzymes physiological
12
physiological properties
12
grain yield
12
winter wheat
12
heavy metals
12
wastewater
11
irrigation
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!