In the middle-to-late Holocene, Earth's monsoonal regions experienced catastrophic precipitation decreases that produced green to desert state shifts. Resulting hydrologic regime change negatively impacted water availability and Neolithic cultures. Whereas mid-Holocene drying is commonly attributed to slow insolation reduction and subsequent nonlinear vegetation-atmosphere feedbacks that produce threshold conditions, evidence of trigger events initiating state switching has remained elusive. Here we document a threshold event ca. 4,200 years ago in the Hunshandake Sandy Lands of Inner Mongolia, northern China, associated with groundwater capture by the Xilamulun River. This process initiated a sudden and irreversible region-wide hydrologic event that exacerbated the desertification of the Hunshandake, resulting in post-Humid Period mass migration of northern China's Neolithic cultures. The Hunshandake remains arid and is unlikely, even with massive rehabilitation efforts, to revert back to green conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311860PMC
http://dx.doi.org/10.1073/pnas.1418090112DOI Listing

Publication Analysis

Top Keywords

desertification hunshandake
8
hunshandake sandy
8
sandy lands
8
lands inner
8
inner mongolia
8
mongolia northern
8
northern china
8
neolithic cultures
8
groundwater sapping
4
sapping irreversible
4

Similar Publications

Planting forests is an effective way to improve desertification. In order to elucidate the impacts of different vegetation types on soil development and restoration of degraded lands, we compared the properties of soils at different depths in three plantation forests in the Hunsandak Sandy Land in the Chinese agro-pastoral ecotone (Ulmus pumila, Pinus sylvestris var. mongolica, and Populus simonii).

View Article and Find Full Text PDF

Evaluating the impacts of land use change on ecosystem service values under multiple scenarios in the Hunshandake region of China.

Sci Total Environ

December 2022

Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.

Changes in land use in an agro-pastoral region affect the delivery of ecosystem services. The trajectory of future land use change and its impacts on human society are not yet well understood, which poses a challenge to efforts to balance the socioeconomic development with the supply of ecosystem services. Taking the Hunshandake region for a case study, we developed four land use scenarios, and projected the future land use patterns under those scenarios using the GeoSOS-FLUS model.

View Article and Find Full Text PDF

Global water shortage is becoming increasingly severe, so the identification and protection of potential areas for harvesting water play important roles in alleviating drought. Suitable sites for potential water harvesting require a high runoff potential. Avoiding soil erosion caused by high surface runoff, however, is also necessary.

View Article and Find Full Text PDF

Soil erosion is an important ecological and environmental problem in Hunshandake Desert, and the sand-fixing function determines the degree of ecological security in the entire region. In order to clarify the situation of windbreak and sand fixation in Hunshandake area, and to guide the prevention and treatment of desertification on regional scale, based on the meteorological and remote sensing data, this paper quantitatively analyzed the temporal and spatial pattern of windbreak and sand fixation ability between 2000-2010 by the revised wind erosion equation (RWEQ) model, meanwhile, the driving forces for each county ( or banner) in the functional zone were analyzed with the method of principal component analysis. The results showed that there was a fluctuation of the sand fixing capacity in Hunshandake over time, generally rendering a decline trend.

View Article and Find Full Text PDF

In the middle-to-late Holocene, Earth's monsoonal regions experienced catastrophic precipitation decreases that produced green to desert state shifts. Resulting hydrologic regime change negatively impacted water availability and Neolithic cultures. Whereas mid-Holocene drying is commonly attributed to slow insolation reduction and subsequent nonlinear vegetation-atmosphere feedbacks that produce threshold conditions, evidence of trigger events initiating state switching has remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!