The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313834PMC
http://dx.doi.org/10.1073/pnas.1415311112DOI Listing

Publication Analysis

Top Keywords

particulate organic
8
organic carbon
8
poc flux
8
length scale
8
shallower remineralization
8
labile fraction
8
remineralization
6
attenuation sinking
4
sinking particulate
4
carbon
4

Similar Publications

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

This study investigated major contributors of the particulate organic matter (POM) using stable isotope ratios of particulate organic carbon (δC) and its relationship with phytoplankton composition during three seasons across six coast-offshore transects in the eastern Arabian Sea (EAS). Results revealed significant spatiotemporal variations, with elevated δC in coastal waters during the winter and summer monsoon (-22.40 ± 1.

View Article and Find Full Text PDF

The presence of aquatic biopolymeric organic carbon of high (> 10 - 20 kDa) molecular weight (high-MW OC) in drinking water produced from surface water affects its biological stability which may cause regrowth in disinfectant-free distribution. This study compares two analytical methods for determining the concentration of aquatic high-MW OC, namely LC-OCD (liquid chromatography - organic carbon detection) and PHMOC (particulate and colloidal high-molecular weight OC). LC-OCD entails prefiltration of the water sample, chromatographical separation of the relevant biopolymer (BP) OC-fraction, and in-line OC detection.

View Article and Find Full Text PDF

Distributions of DMS and DMSP and the influences of planktonic community assemblages in the Bohai Sea and Yellow Sea.

Mar Environ Res

December 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) are important sulfur compounds influenced by community assemblages of plankton. The distributions of DMS, DMSP, DMSP lyase activity (DLA), DMSP-consuming bacteria (DCB), and community structures of phytoplankton and zooplankton were investigated during summer in the Bohai Sea and Yellow Sea. The variety ranges of DMS, dissolved DMSP (DMSP), and particulate DMSP (DMSP) concentrations in the surface seawater were 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!