MiR-17-5p up-regulates YES1 to modulate the cell cycle progression and apoptosis in ovarian cancer cell lines.

J Cell Biochem

Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, 300070, China; Maternity and Child Healthcare Hospital, Anyang City, Henan Province, 455000, China.

Published: June 2015

MicroRNAs (miRNAs) are small, non-coding RNAs that participate in the regulation of gene expression. Although many studies have demonstrated the involvement of miR-17-5p in different cancers, little is known to its function in ovarian cancer. In this study, we demonstrated that overexpression of miR-17-5p was able to enhance cell proliferation by promoting G1/S transition of the cell cycle and suppressing apoptosis in ES-2 and OVCAR3 cell lines, whereas inhibition of miR-17-5p yielded the reverse phenotype. YES1 was identified as a novel target gene of miR-17-5p. Moreover, miR-17-5p was found to directly bind to the 3'UTR of YES1 mRNA and up-regulated its expression. Furthermore, knockdown of YES1 led to the suppression of proliferation and induced cell cycle arrest in ES-2 and OVCAR3 cells. Ectopic expression of YES1 was able to reverse the effects of miR-17-5p inhibition. Collectively, our results indicated that miR-17-5p might play a role in human ovarian cancer by up-regulating YES1 expression. J. Cell. Biochem. 116: 1050-1059, 2015. © 2015 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.25060DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
ovarian cancer
12
mir-17-5p
8
cell lines
8
es-2 ovcar3
8
cell
7
yes1
6
mir-17-5p up-regulates
4
up-regulates yes1
4
yes1 modulate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!