The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from 500 to 1200 nm and a QD core diameter between 1.5 and 9 nm. Conjugation of a tumor-avid cyclic pentapeptide (Arg-Gly-Asp-DPhe-Lys) resulted in monodisperse, water-soluble QDs (hydrodynamic diameter < 10 nm) without loss of the peptide's high binding affinity to tumor-associated integrins (KI = 1.8 nM/peptide). Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and noncytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310643 | PMC |
http://dx.doi.org/10.1021/nn5071183 | DOI Listing |
Small
December 2024
Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
Carbon material is a hot topic in solar evaporation. Due to the widely distributed microorganisms in natural water, biofouling has limited the actual application of solar evaporation material. Although carbon material lacks of nutrition for microbe, it is still vulnerable to biofouling because of the efficient pollutant adsorption property.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Chemistry, Academy of Materials Science, Navi Mumbai, India.
Unlabelled: We present the chemical synthesis of polyethyleneimine-conjugated silver sulfide nanoparticles (PEI/AS) utilizing an economical solvothermal synthesis method, aimed at developing effective alternative antibacterial agents. The antibacterial efficacy of the synthesized materials, both with and without the application of near-infrared (NIR) laser irradiation, was evaluated in vitro against two distinct clinically relevant multi-drug-resistant (MDR) uropathogenic strains: and . The bactericidal effects induced by NIR light indicate that the PEI/AS nanoparticles possess an efficiency that is five times greater than that of AgS alone.
View Article and Find Full Text PDFNat Commun
November 2024
College of Earth Sciences, Guilin University of Technology, Guilin, China.
Silver deposits have long been considered to form due to the direct precipitation of silver minerals from aqueous fluids, in which the metal is transported as chloride and/or bisulfide complexes. Ultra-high-grade silver ores have silver contents up to tens of weight-percent in the form of silver sulfides and native silver. Ore-forming fluids of most silver deposits, however, typically contain low silver contents of parts per million silver.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China; School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China. Electronic address:
Sharing the same photoexcitation process, fluorescence (FL) and photoelectrochemistry (PEC) accomplish optical-optical and optical-electrochemical switches respectively, and are both widely used in diverse fields. However, since FL and PEC are mutually exclusive in principle, it is difficult to obtain intense FL and PEC responses in a system, limiting FL-PEC dual-mode applications. In this study, AgS quantum dots (QDs) and In(OH) nanoblocks (NBs) are simultaneously synthesized by BSA-templated bio-mineralization, and the excited state electrons of AgS/In(OH)@BSA nanocomposites (NCs) are further regulated by a proteolysis process.
View Article and Find Full Text PDFBioelectrochemistry
April 2025
School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, PR China; Shandong Provincial Innovation Center for Dairy Technology, Zibo 255000, PR China; Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo 255000, PR China. Electronic address:
Zearalenone (ZEN), a secondary metabolite mycotoxin primarily synthesized by Fusarium species and prevalent in cereal grains, exerts estrogenic effects that could induce reproductive toxicity and teratogenic outcomes. To enhance the precision of ZEN detection, we have developed an innovative photoelectrochemical (PEC) aptamer-based sensor employing in situ growth silver sulfide (AgS) quantum dots-sensitized graphitic carbon nitride/bismuth oxybromide (g-CN/BiOBr) heterojunction. The g-CN/BiOBr composite exhibits robust structural stability and straightforward synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!