Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.

J Environ Manage

Department of Civil and Water Resources Engineering, University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria.

Published: March 2015

In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2014.12.035DOI Listing

Publication Analysis

Top Keywords

flocculation behavior
8
behavior mechanism
8
produced aspergillus
8
aspergillus flavus
8
bioflocculant ih-7
8
flocculating rate
8
ih-7
6
flocculation
4
bioflocculant
4
mechanism bioflocculant
4

Similar Publications

pH-dependent emulsifying properties of pea protein isolate: Investigation of the structure - Function relationship.

Int J Biol Macromol

December 2024

Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France. Electronic address:

This study investigated the relationship between pea protein isolates (PPI) emulsifying properties and their structural, interfacial, and physicochemical characteristics at various pH values (native pH, 7, 5, and 3). Emulsion characteristics including emulsifying activity and stability, droplet size, flocculation index (FI) and coalescence index (CI) were examined. Additionally, physicochemical properties such as solubility, zeta potential, surface hydrophobicity, interfacial protein adsorption and protein conformation were analyzed.

View Article and Find Full Text PDF

Fluidity influences the use of backfill materials in the mining industry. A new backfill material-modified magnesium slag-based backfill materials (MFPB)-is made from solid waste from coal and metallurgy. We focus on the compatibility of polycarboxylate water reducing agent (SP) with MFPB and its effect on MFPB performance.

View Article and Find Full Text PDF

The gastric digestion behavior of different commercial Stage 1 infant formulae (for 0-6 months) with different formulation backgrounds was investigated using an dynamic infant human gastric simulator (iHGS). The microstructural arrangements of the protein and lipid, colloidal stability and protein hydrolysis during digestion were elucidated. During gastric digestion, casein-dominant formulations showed a higher extent of aggregation due to their high proportion of casein micelles that underwent coagulation upon acidification and via the action of pepsin.

View Article and Find Full Text PDF

New insight of biophysical aggregates' geometric distributions from side and bottom views during their flocculation and settling in saline water.

Water Res

December 2024

School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.

Article Synopsis
  • Biophysical mud aggregates, made of clay minerals and extracellular polymeric substances (EPS), are essential for water quality and aquatic ecosystems, but their complex shapes and settling behaviors in saline water are not well understood.
  • A new dual-view method using an inverted microscope and side camera was developed to take detailed images of these aggregates from different angles, revealing that bottom-view images offer better insights into their geometric properties during settling.
  • The study found that flocs made from clay-EPS mixtures are larger and more irregular than those made from pure clay, with EPS promoting stability in larger flocs during turbulence, indicating that models of flocculation need to consider organic materials and use a multi-perspective approach for better accuracy.
View Article and Find Full Text PDF

Thermally regulated flocculation-coalescence process by temperature-responsive cationic polymeric surfactant for enhanced crude oil-water separation.

J Hazard Mater

November 2024

Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China. Electronic address:

Polymeric surfactants play a crucial role in the flocculation-assisted coalescence process due to their unique bridging effect. However, the steric hindrance induced by their large molecules severely impedes the coalescence of oil droplets. Herein, temperature-responsive polymeric surfactants (quaternary ammonium chitosan-g-PNIPAM, Q-g-PN) with thermally-modulated structure were designed by integrating thermal responsive moieties onto cationic chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!