Denitrification, anammox, and N₂ production in marine sediments.

Ann Rev Mar Sci

School of Oceanography, University of Washington, Seattle, Washington 98195-5351; email:

Published: July 2016

Fixed nitrogen limits primary productivity in many parts of the global ocean, and it consequently plays a role in controlling the carbon dioxide content of the atmosphere. The concentration of fixed nitrogen is determined by the balance between two processes: the fixation of nitrogen gas into organic forms by diazotrophs, and the reconversion of fixed nitrogen to nitrogen gas by denitrifying organisms. However, current sedimentary denitrification rates are poorly constrained, especially in permeable sediments, which cover the majority of the continental margin. Also, anammox has recently been shown to be an additional pathway for the loss of fixed nitrogen in sediments. This article briefly reviews sedimentary fixed nitrogen loss by sedimentary denitrification and anammox, including in sediments in contact with oxygen-deficient zones. A simple extrapolation of existing rate measurements to the global sedimentary denitrification rate yields a value smaller than many existing measurement-based estimates but still larger than the rate of water column denitrification.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-marine-010213-135040DOI Listing

Publication Analysis

Top Keywords

fixed nitrogen
20
sedimentary denitrification
12
denitrification anammox
8
nitrogen gas
8
nitrogen
7
denitrification
5
fixed
5
anammox n₂
4
n₂ production
4
production marine
4

Similar Publications

Complete genome sequence of LLZ14, a nitrogen-fixing and plant growth-promoting bacterium.

Microbiol Resour Announc

January 2025

Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.

In this study, we present the complete genome of LLZ14, a nodule-forming bacterium isolated from root nodules with high plant growth-promoting abilities. This genome contains genes predicted to be involved in plant stress tolerance and growth promotion, including auxin production, phosphatase, and 1-aminocyclopropane-1-carboxylate deaminase.

View Article and Find Full Text PDF

Exploring diazotrophic diversity: unveiling Nif core distribution and evolutionary patterns in nitrogen-fixing organisms.

BMC Genomics

January 2025

Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector - SEPT, UFPR, Curitiba, Paraná, Brazil.

Background: Diazotrophs carry out biological nitrogen fixation (BNF) using the nitrogenase enzyme complex (NEC), which relies on nitrogenase encoded by nif genes. Horizontal gene transfer (HGT) and gene duplications have created significant diversity among these genes, making it challenging to identify potential diazotrophs. Previous studies have established a minimal set of Nif proteins, known as the Nif core, which includes NifH, NifD, NifK, NifE, NifN, and NifB.

View Article and Find Full Text PDF

The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.

View Article and Find Full Text PDF

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!