A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A neutral theory for interpreting correlations between species and genetic diversity in communities. | LitMetric

A neutral theory for interpreting correlations between species and genetic diversity in communities.

Am Nat

Centre d'Ecologie Fonctionnelle et Evolutive, Unité Mixte de Recherche (UMR) 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Ecole Pratique des Hautes Etudes, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France.

Published: January 2015

AI Article Synopsis

  • Spatial patterns of biodiversity are crucial in understanding the interplay between genetic diversity and species diversity, often referred to as the species-gene diversity correlation (SGDC).
  • The authors develop a model that reveals how competition, site connectivity, and carrying capacity influence the emergence of SGDC in metacommunities, suggesting that positive correlations can arise from various ecological dynamics.
  • The model also introduces the mutation process, demonstrating that low mutation rates can lead to positive SGDCs, while high mutation rates may result in negative SGDCs, indicating that neutral processes do not consistently enhance these correlations.

Article Abstract

Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.

Download full-text PDF

Source
http://dx.doi.org/10.1086/678990DOI Listing

Publication Analysis

Top Keywords

species diversity
12
positive sgdcs
8
genetic species
8
diversity
6
neutral theory
4
theory interpreting
4
interpreting correlations
4
species
4
correlations species
4
genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!