Stabilities of ITO-containing and ITO-free organic solar cells were investigated under simulated AM 1.5G illumination and under concentrated natural sunlight. In both cases ITO-free devices exhibit high stability, while devices containing ITO show degradation of their photovoltaic performance. The accelerated degradation under concentrated sunlight (of up to 20 suns) in ITO-containing devices was found to be reversible. Dark exposure of degraded samples can partly restore performance. A possible underlying mechanism for such a phenomenon is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp05571c | DOI Listing |
Science
January 2025
Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
The recent discovery of nonvisual photoreceptors in various organs has raised expectations for uncovering their roles and underlying mechanisms. In this work, we identified a previously unrecognized hormone-releasing mechanism in the pituitary of the Japanese rice fish (medaka) induced by light. Ca imaging analysis revealed that melanotrophs, a type of pituitary endocrine cell that secretes melanocyte-stimulating hormone, robustly increase the concentration of intracellular Ca during short-wavelength light exposure.
View Article and Find Full Text PDFDye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.
View Article and Find Full Text PDFSci Total Environ
December 2024
Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK. Electronic address:
Given the limited research on pharmaceuticals and personal care products (PPCPs) in the Wuhan section of the Yangtze River (WYR), this work investigated the distribution of 15 PPCPs in this region, assessed their ecological risks and annual fluxes. It was further to analyze the levels of indicator sucralose in the WYR to understand the sources of PPCPs. The results showed the average concentrations were 143.
View Article and Find Full Text PDFFront Plant Sci
December 2024
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.
Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).
Water Sci Technol
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an emerging alternative to traditional perfluoroalkyl substances (PFASs), which is characterized by its biotoxicity and persistence. The UV/sulfite/iodide photo-induced hydrated electrons system can effectively degrade HFPO-TA under mild conditions. However, the effects of water quality on this system need to be urgently investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!