Ultraendurance cycling in a hot environment: thirst, fluid consumption, and water balance.

J Strength Cond Res

1Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut; 2Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas; and 3Vinson Health Center, Midwestern State University, Wichita Falls, Texas.

Published: April 2015

The purpose of this field investigation was to identify and clarify factors that may be used by strength and conditioning professionals to help athletes drink adequately but not excessively during endurance exercise. A universal method to accomplish this goal does not exist because the components of water balance (i.e., sweat rate, fluid consumed) are different for each athlete and endurance events differ greatly. Twenty-six male cyclists (mean ± SD; age, 41 ± 8 years; height, 177 ± 7 cm; body mass, 81.85 ± 8.95 kg) completed a summer 164-km road cycling event in 7.0 ± 2.1 hours (range, 4.5-10.4 hours). Thirst ratings, fluid consumed, indices of hydration status, and body water balance (ingested fluid volume - [urine excreted + sweat loss]) were the primary outcome variables. Measurements were taken before the event, at designated aid stations on the course (52, 97, and 136 km), and at the finish line. Body water balance during exercise was not significantly correlated with exercise time on the course, height, body mass, or body mass index. Thirst ratings were not significantly correlated with any variable. We also observed a wide range of total sweat losses (4.9-12.7 L) and total fluid intakes (2.1-10.5 L) during this ultraendurance event. Therefore, we recommend that strength and conditioning professionals develop an individualized drinking plan for each athlete, by calculating sweat rate (milliliter per hour) on the basis of body mass change (in kilograms), during field simulations of competition.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0000000000000822DOI Listing

Publication Analysis

Top Keywords

water balance
16
body mass
16
strength conditioning
8
conditioning professionals
8
sweat rate
8
fluid consumed
8
thirst ratings
8
body water
8
body
6
fluid
5

Similar Publications

Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.

View Article and Find Full Text PDF

Nanocellulose composites based on embedded europium-containing coordination polymers for the detection of antibiotics.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.

View Article and Find Full Text PDF

Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars.

View Article and Find Full Text PDF

Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!