The purpose of this field investigation was to identify and clarify factors that may be used by strength and conditioning professionals to help athletes drink adequately but not excessively during endurance exercise. A universal method to accomplish this goal does not exist because the components of water balance (i.e., sweat rate, fluid consumed) are different for each athlete and endurance events differ greatly. Twenty-six male cyclists (mean ± SD; age, 41 ± 8 years; height, 177 ± 7 cm; body mass, 81.85 ± 8.95 kg) completed a summer 164-km road cycling event in 7.0 ± 2.1 hours (range, 4.5-10.4 hours). Thirst ratings, fluid consumed, indices of hydration status, and body water balance (ingested fluid volume - [urine excreted + sweat loss]) were the primary outcome variables. Measurements were taken before the event, at designated aid stations on the course (52, 97, and 136 km), and at the finish line. Body water balance during exercise was not significantly correlated with exercise time on the course, height, body mass, or body mass index. Thirst ratings were not significantly correlated with any variable. We also observed a wide range of total sweat losses (4.9-12.7 L) and total fluid intakes (2.1-10.5 L) during this ultraendurance event. Therefore, we recommend that strength and conditioning professionals develop an individualized drinking plan for each athlete, by calculating sweat rate (milliliter per hour) on the basis of body mass change (in kilograms), during field simulations of competition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000000822 | DOI Listing |
Sci Rep
January 2025
College of New Energy and Environment, Jilin University, Changchun, 130012, China.
Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China. Electronic address:
Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Italy; Centre of Agro-Ecological Research "Enrico Avanzi" (CiRAA), Pisa, Italy.
Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, TURKEY.
Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!