A systematic study on photolysis of tetrabromobisphenol A (2,2',6,6'-tetrabromo-4,4'-isopropylidendiphenol, TBBPA) in water was investigated under simulated sunlight irradiation. The results showed that the photolysis of TBBPA followed apparent pseudo-first-order kinetics. The photolysis rate constants (k) changed from 2.80 × 10(-2) to 0.70 × 10(-2)min(-1) with the concentrations of TBBPA varying from 0.1 to 10 mg L(-1). Increasing humic acid (HA) concentration from 0-100 mg L(-1) led to the decrease of k from 2.53 × 10(-2) to 0.39 × 10(-2)min(-1), which was due to the competitive adsorption for photons between HA and TBBPA molecules. The photolysis rate was faster at near-neutral conditions (pH=6 and 7) than that in either acidic or basic conditions. Electron spin resonance (ESR) and reactive oxygen species (ROS) scavenging experiments indicated that TBBPA underwent self-sensitized photooxidation via ROS (i.e., OH, (1)O2 and O2(-)), and the process was mainly controlled by O2(-). After irradiation of 180 min, about 35.0% reduction of TOC occurred accompanied with approximate 99.1% of TBBPA removed. The detection of products (i.e., Br(-), bisphenol A, 2,6-dibromophenol, 2-bromophenol and phenol) revealed that the main photolytic pathways of TBBPA were debromination and breakage of C-C bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2014.12.016 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.
Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).
View Article and Find Full Text PDFSmall
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.
View Article and Find Full Text PDFNat Commun
January 2025
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Analysis and Testing Center, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
CO conversion to CHOH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO reduction to CHOH can only produce CHOH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO electroreduction to syngas, and further photothermal conversion into high-purity CHOH (volume fraction > 97%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!