Background: Itch-producing compounds stimulate receptors expressed on small diameter fibers that innervate the skin. Many of the currently known pruritogen receptors are Gq Protein-Coupled Receptors (GqPCR), which activate Protein Kinase C (PKC). Specific isoforms of PKC have been previously shown to perform selective functions; however, the roles of PKC isoforms in regulating itch remain unclear. In this study, we investigated the novel PKC isoform PKCδ as an intracellular modulator of itch signaling in response to histamine and the non-histaminergic pruritogens chloroquine and β-alanine.
Results: Behavioral experiments indicate that PKCδ knock-out (KO) mice have a 40% reduction in histamine-induced scratching when compared to their wild type littermates. On the other hand, there were no differences between the two groups in scratching induced by the MRGPR agonists chloroquine or β-alanine. PKCδ was present in small diameter dorsal root ganglion (DRG) neurons. Of PKCδ-expressing neurons, 55% also stained for the non-peptidergic marker IB4, while a smaller percentage (15%) expressed the peptidergic marker CGRP. Twenty-nine percent of PKCδ-expressing neurons also expressed TRPV1. Calcium imaging studies of acutely dissociated DRG neurons from PKCδ-KO mice show a 40% reduction in the total number of neurons responsive to histamine. In contrast, there was no difference in the number of capsaicin-responsive neurons between KO and WT animals. Acute pharmacological inhibition of PKCδ with an isoform-specific peptide inhibitor (δV1-1) also significantly reduced the number of histamine-responsive sensory neurons.
Conclusions: Our findings indicate that PKCδ plays a role in mediating histamine-induced itch, but may be dispensable for chloroquine- and β-alanine-induced itch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298070 | PMC |
http://dx.doi.org/10.1186/1744-8069-11-1 | DOI Listing |
Hepatology
January 2025
Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Ningde Hospital Affiliated to Ningde Normal University, Department of Stomatology, Fujian, China.
Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).
Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.
Sci Adv
January 2025
Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States.
AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival.
View Article and Find Full Text PDFPLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!