ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins.

Biochem J

*Biophysics Unit, Spanish Science Research Council University of the Basque Country (CSIC-UPV/EHU), and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain.

Published: March 2015

The hexameric AAA+ (ATPase associated with various cellular activities) chaperone ClpB reactivates protein aggregates in collaboration with the DnaK system. An intriguing aspect of ClpB function is that the active hexamer is unstable and therefore questions how this chaperone uses multiple rounds of ATP hydrolysis to translocate substrates through its central channel. In the present paper, we report the use of biochemical and fluorescence tools to explore ClpB dynamics under different experimental conditions. The analysis of the chaperone activity and the kinetics of subunit exchange between protein hexamers labelled at different protein domains indicates, in contrast with the current view, that (i) ATP favours assembly and ADP dissociation of the hexameric assembly, (ii) subunit exchange kinetics is at least one order of magnitude slower than the ATP hydrolysis rate, (iii) ClpB dynamics and activity are related processes, and (iv) DnaK and substrate proteins regulate the ATPase activity and dynamics of ClpB. These data suggest that ClpB hexamers remain associated during several ATP hydrolysis events required to partially or completely translocate substrates through the protein central channel, and that ClpB dynamics is tuned by DnaK and substrate proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20141390DOI Listing

Publication Analysis

Top Keywords

clpb dynamics
16
substrate proteins
12
atp hydrolysis
12
clpb
8
dnak system
8
translocate substrates
8
central channel
8
subunit exchange
8
dnak substrate
8
dynamics driven
4

Similar Publications

Ferguson Plot Analysis of Chaperone ClpB from Moderate Halophile.

Protein J

January 2025

Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.

The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.

View Article and Find Full Text PDF

Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.

View Article and Find Full Text PDF

AAA+ proteins (ATPases associated with various cellular activities) comprise a family of powerful ring-shaped ATP-dependent translocases that carry out numerous vital substrate-remodeling functions. ClpB is a AAA+ protein disaggregation machine that forms a two-tiered hexameric ring, with flexible pore loops protruding into its center and binding to substrate proteins. It remains unknown whether these pore loops contribute only passively to substrate-protein threading or have a more active role.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) and high-speed AFM allow direct observation of biomolecular structures and their functional dynamics. Based on scanning the molecular surface of a sample deposited on a supporting substrate by a probing tip, topographic images of its dynamic shape are obtained. Critical to successful AFM observations is a balance between immobilization of the sample while avoiding too strong perturbations of its functional conformational dynamics.

View Article and Find Full Text PDF

The interfacial properties of p-i-n inverted perovskite solar cells (PSCs) play a key role in further improving the photovoltaic performance of PSCs. Herein, multisite synergistic interactions were constructed using ionic liquids (ILs) prepared by mixing urea and choline chloride (ChCl) to substantially improve the interfacial properties of inverted PSCs. Systematically theoretical calculations and experimental studies are comprehensively performed, which reveal that the C═O···Pb coordination interaction, N-H···I hydrogen bond, and Cl-Pb bond could be simultaneously formed between the perovskites and IL, and Ch in IL could interact with the perovskite by occupying the formamidinium site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!