MADS box family transcription factors are involved in signal transduction and development control through DNA specific sequence recognition. The DNA binding domain of these proteins contains a conservative 55-60 amino acid sequence which defines the membership of this large family. Here we present a thorough study of the MADS segment of serum response factor (MADS(SRF)). Fluorescence, UV-absorption, and Raman spectroscopy studies were performed in order to disclose its behavior and basic functional properties in an aqueous environment. The secondary structure of MADS(SRF) estimated by analysis of Raman spectra and supported by CD has revealed only the C-terminal part as homologous with those of free core-SRF, while the N-terminal part has lost the stable α-helical structure found in both the free core-SRF and its specific complex with DNA. The three tyrosine residues of the MADS(SRF) were used as spectroscopic inner probes. The effect of environmental conditions, especially pH variations and addition of variously charged quenchers, on their spectra was examined. Two-component fluorescence quenching was revealed using factor analysis and corresponding Stern-Volmer constants determined. Factor analysis of absorbance and fluorescence pH titration led to determination of three dissociation constants pKa1 = 6.4 ± 0.2, pKa2 = 7.3 ± 0.2, and pKa3 = 9.6 ± 0.6. Critical comparison of all experiments identified the deprotonation of His193 hydrogen bonded to Tyr195 as a candidate for pKa1 (and that of Tyr158 as a candidate for pKa2). Within MADS(SRF), His193 is a key intermediary between the N-terminal primary DNA binding element and the hydrophobic C-terminal protein dimerization element.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp508897p | DOI Listing |
Plant Reprod
January 2025
Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Life Science, Jilin Agricultural University, Changchun 130118, China.
genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology/Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
The MADS-box transcription factor (TF) gene family is pivotal in various aspects of plant biology, particularly in growth, development, and environmental adaptation. It comprises Type I and Type II categories, with the MIKC-type subgroups playing a crucial role in regulating genes essential for both the vegetative and reproductive stages of plant life. Notably, MADS-box proteins can influence processes such as flowering, fruit ripening, and stress tolerance.
View Article and Find Full Text PDFElife
January 2025
John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!