The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 μm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280825 | PMC |
http://dx.doi.org/10.1002/open.201402027 | DOI Listing |
Life (Basel)
November 2024
Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Las Lagunillas University Campus, 23009 Jaen, Spain.
Sex differences in brain metabolism and their relationship to neurodegenerative diseases like Alzheimer's are an important emerging topic in neuroscience. Intrinsic anatomic and metabolic differences related to male and female physiology have been described, underscoring the importance of considering biological sex in studying brain metabolism and associated pathologies. The hippocampus is a key structure exhibiting sex differences in volume and connectivity.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden.
The insulin-regulated aminopeptidase (IRAP; oxytocinase) is part of the M1 aminopeptidase family and is highly expressed in many tissues, including the neocortex and hippocampus of the brain. IRAP is involved in various physiological functions and has been identified as a receptor for the endogenous hexapeptide Angiotensin IV (Ang IV). The binding of Ang IV inhibits the enzymatic activity of IRAP and has been proven to enhance learning and memory in animal models.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2024
Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Purpose: The purpose of this study was to investigate the correlation between insulin and Fetuin-B (FETUB) and the influence of FETUB on insulin signaling pathway in diabetic retinopathy (DR).
Methods: Enzyme-linked immunosorbent assay (ELISA) was used to analyze FETUB and insulin levels in the serum and aqueous fluid of patients with DR and healthy controls. Quantitative PCR (q-PCR), Western blotting, and ELISA were used to examine FETUB expression in ARPE-19, BV2, and Müller cells under insulin stimulation.
Insulin-regulated aminopeptidase (IRAP) is an enzyme with important biological functions and the target of drug-discovery efforts. We combined in silico screening with a medicinal chemistry optimization campaign to discover a nanomolar inhibitor of IRAP based on a pyrazolylpyrimidine scaffold. This compound displays an excellent selectivity profile versus homologous aminopeptidases, and kinetic analysis suggests it utilizes an uncompetitive mechanism of action when inhibiting the cleavage of a typical dipeptidic substrate.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden.
With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!