Purpose: Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants.
Materials And Methods: A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis.
Results: Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness.
Conclusion: Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279049 | PMC |
http://dx.doi.org/10.4047/jap.2014.6.6.498 | DOI Listing |
Evid Based Dent
January 2025
Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India.
Design: A triple-armed, double-blind randomized controlled trial with cross-over design investigated patient-reported satisfaction and objective dental evaluation of a 3-unit, monolithic zirconium dioxide (ZrO2), implant-supported fixed dental prosthesis (iFDP) fabricated with 2 completely digital workflows and 1 mixed analog-digital workflow.
Case Selection: Participants enrolled required rehabilitation of 2 dental implants in posterior region of either of the arches with a 3-unit, ZrO2 iFDP. A total of 20 participants received the 3 types of ZrO2, iFDP fabricated by 3 different methods.
Evid Based Dent
January 2025
Eastman Dental Institute, London, UK.
Design: A retrospective cohort study assessing the mid-to-long-term outcomes and risk factors affecting the prosthetic success and survival of implant-supported cross-arch fixed dental prostheses (IFCDPs) with monolithic zirconia frameworks.
Cohort Selection: Forty-seven patients received a total of 51 cross-arch prostheses (27 maxillary and 24 mandibular prostheses), supported by 302 implants. Comprehensive clinical and radiographic records were available over a follow-up period ranging from 5 to 13 years.
Sci Rep
January 2025
Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Takamatsu, 761-0793, Kagawa, Japan.
This study aims to evaluate the potential enhancement in implant classification performance achieved by incorporating artificially generated images of commercially available products into a deep learning process of dental implant classification using panoramic X-ray images. To supplement an existing dataset of 7,946 in vivo dental implant images, a three-dimensional scanner was employed to create implant surface models. Subsequently, implant surface models were used to generate two-dimensional X-ray images, which were compiled along with original images to create a comprehensive dataset.
View Article and Find Full Text PDFBDJ Open
January 2025
Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, India.
Objective: Peri-implant diseases (peri-implant mucositis and peri-implantitis) are inflammatory conditions that affect the peri-implant tissues and are induced by microbial biofilms (dental plaque) formed around the implant. Removal of biofilm is the fundamental step in managing peri-implant diseases. Interdental cleaning aids such as interdental brush, unitufted brush, or oral irrigation along with regular toothbrushing are recommended for effective plaque control around implants.
View Article and Find Full Text PDFActa Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!