A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disease progression in iridocorneal angle tissues of BMP2-induced ocular hypertensive mice with optical coherence tomography. | LitMetric

AI Article Synopsis

  • The study aimed to explore the use of spectral domain optical coherence tomography (SD-OCT) for assessing glaucomatous disease progression in a mouse model overexpressing BMP2.
  • Observations included significant increases in intraocular pressure (IOP) and changes in outflow tissue morphology alongside functional measurements over a 36-day period.
  • Results showed that SD-OCT effectively tracked morphological changes in outflow tissues corresponding to IOP variations, indicating potential for monitoring disease progression in glaucoma research.

Article Abstract

Purpose: The goal of the present study was to test for the first time whether glaucomatous-like disease progression in a mouse can be assessed morphologically and functionally with spectral domain optical coherence tomography (SD-OCT).

Methods: We monitored progressive changes in conventional outflow tissues of living mice overexpressing human bone morphogenetic protein 2 (BMP2), a model for glaucoma. Intraocular pressure (IOP) and outflow tissue morphology/Young's modulus were followed in mice for 36 days with rebound tonometry and SD-OCT, respectively. Results were compared to standard histological methods. Outflow facility was calculated from flow measurements with direct cannulation of anterior chambers subjected to three sequential pressure steps.

Results: Overexpression of BMP2 significantly elevated IOP in a biphasic manner over time compared to mice that overexpressed green fluorescent protein in outflow cells and naïve controls. SD-OCT revealed changes in outflow tissues overexpressing BMP2 that corresponded with the timing of the IOP phases and decreased outflow facility. In the first phase, the angle was open, but the trabecular meshwork and the cornea were thickened. OCT detected increased trabecular meshwork stiffness after provocative IOP challenges of the BMP2 eyes, which corresponded to increased collagen deposition with transmission electron microscopy. In contrast, the angle was closed in the second phase. IOP elevation over 36 days due to BMP2 overexpression resulted in significant retinal ganglion cell and axon loss.

Conclusions: Although not a feasible open-angle glaucoma model, the BMP2 mice were useful for demonstrating the utility of SD-OCT in following disease progression and differentiating between two forms of ocular pathology over time that resulted in ocular hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279588PMC

Publication Analysis

Top Keywords

disease progression
12
optical coherence
8
coherence tomography
8
outflow tissues
8
outflow facility
8
trabecular meshwork
8
outflow
6
bmp2
6
mice
5
iop
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!