A requirement for Gch1 and tetrahydrobiopterin in embryonic development.

Dev Biol

BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.

Published: March 2015

Introduction: GTP cyclohydrolase I (GTPCH) catalyses the first and rate-limiting reaction in the synthesis of the enzymatic cofactor, tetrahydrobiopterin (BH4). Loss of function mutations in the GCH1 gene lead to congenital neurological diseases such as DOPA-responsive dystonia and hyperphenylalaninemia. However, little is known about how GTPCH and BH4 affects embryonic development in utero, and in particular whether metabolic replacement or supplementation in pregnancy is sufficient to rescue genetic GTPCH deficiency in the developing embryo.

Methods And Results: Gch1 deficient mice were generated by the insertion of loxP sites flanking exons 2-3 of the Gch1 gene. Gch1(fl/fl) mice were bred with Sox2cre mice to generate mice with global Gch1 deficiency. Genetic ablation of Gch1 caused embryonic lethality by E13.5. Despite loss of Gch1 mRNA and GTPCH enzymatic activity, whole embryo BH4 levels were maintained until E11.5, indicating sufficient maternal transfer of BH4 to reach this stage of development. After E11.5, Gch1(-/-) embryos were deficient in BH4, but an unbiased metabolomic screen indicated that the lethality was not due to a gross disturbance in metabolic profile. Embryonic lethality in Gch1(-/-) embryos was not caused by structural abnormalities, but was associated with significant bradycardia at E11.5. Embryonic lethality was not rescued by maternal supplementation of BH4, but was partially rescued, up to E15.5, by maternal supplementation of BH4 and l-DOPA.

Conclusion: These findings demonstrate a requirement for Gch1 in embryonic development and have important implications for the understanding of pathogenesis and treatment of genetic BH4 deficiencies, as well as the identification of new potential roles for BH4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347993PMC
http://dx.doi.org/10.1016/j.ydbio.2014.12.025DOI Listing

Publication Analysis

Top Keywords

embryonic development
12
embryonic lethality
12
bh4
9
requirement gch1
8
gch1 gene
8
gch1-/- embryos
8
maternal supplementation
8
supplementation bh4
8
gch1
7
embryonic
6

Similar Publications

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF

The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.

View Article and Find Full Text PDF

A pathological condition in the peripheral nerve tissue, which provides the connection between the organism and the external environment, negatively affects the standard of living. The nerve tissue histotechnology is of serious importance both for scientific studies and for clinical diagnosis. The fixation, which is one of the leading procedures for histological examination of tissues, aims to preserve tissue morphology.

View Article and Find Full Text PDF

The red king crab, Paralithodes camtschaticus, and the Japanese mitten crab, Eriocheir japonica, are the major commercially valuable species. In addition to their high nutritional value, these crabs are used as objects of ecological research. To extend our knowledge of crustacean biochemistry and provide a more comprehensive model of lipidomic patterns during embryonic and larval development of these crab species, we studied the dynamics of molecular species profiles of reserve lipids such as triacylglycerols (TG) and membrane lipids such as glycerophospholipids (PL).

View Article and Find Full Text PDF

Perfluorooctane sulfonate (PFOS) is a widely used chemical in industrial production. It can be introduced into the environment through multiple pathways and exhibits resistance to degradation. Recent research has demonstrated a significant correlation between its exposure levels in the human body and the incidence of various diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!