Therapeutic approaches to protect the heart from ischemia/reperfusion (I/R) injury are an area of intense research, as myocardial infarction is a major cause of mortality and morbidity. Diterpenes are bioactive natural products with great therapeutic potential. In the present study, we have investigated the in vivo cardioprotective effects of a labdane diterpene (DT1) against cardiac I/R injury and the molecular mechanisms involved. DT1 attenuates post-ischemic injury via an AKT-dependent activation of HIF-1α, survival pathways and inhibition of NF-κB signaling. Myocardial infarction (MI) was induced in Wistar rats occluding the left coronary artery (LCA) for 30min followed by 72h reperfusion. DT1 (5mg/kg) was intravenously administered at reperfusion. In addition, we investigated the mechanisms of cardioprotection in the Langendorff-perfused model. Cardioprotection was observed when DT1 was administered after myocardial injury. The molecular mechanisms involved the activation of the survival pathway PDK-1, AKT and AMPK, a reduced phosphorylation of PKD1/2 and sustained HIF-1α activity, leading to increased expression of anti-apoptotic proteins and decreased caspase-3 activation. Pharmacological inhibition of AKT following MI and prior to DT1 challenge significantly decreased the cardioprotection afforded by DT1 therapy at reperfusion. Cardiac function after MI was significantly improved after DT1-treatment, as evidenced by hemodynamic recovery and decreased myocardial infarct size. These findings demonstrate an efficient in vivo cardioprotection by diterpene DT1 against I/R when administered at reperfusion, opening new therapeutic strategies as adjunctive therapy for the pharmacological management of I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.12.011DOI Listing

Publication Analysis

Top Keywords

i/r injury
12
labdane diterpene
8
vivo cardioprotection
8
post-ischemic injury
8
myocardial infarction
8
diterpene dt1
8
injury molecular
8
molecular mechanisms
8
mechanisms involved
8
administered reperfusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!