We show the control of a charging energy in chemically assembled nanoparticle single-electron transistors (SETs) by altering the core diameter of Au nanoparticles. The charging energy is a fundamental parameter that decides the operating temperature of SETs. Practical application of SETs requires us to regulate the value of the charging energy by tuning the diameter of quantum dots. In this study, we used 3.0, 5.0 and 6.2 nm diameter synthesized Au nanoparticles as a quantum dot in the SETs. The total capacitances and charging energy of the SETs were evaluated from the rhombic Coulomb diamonds attributed to a single Coulomb island. The capacitance and charging energy matched with a concentric sphere model much better than with a simple sphere model. The operating temperatures of the SETs suggested that a charging energy 2.2 times greater than the thermal energy was required for stable operation, in theory. These results will help us to select an appropriate core diameter for the Au nanoparticles in practical SETs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/26/4/045702 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
1Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA; email:
Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!