GPx8 is a mammalian Cys-glutathione peroxidase of the endoplasmic reticulum membrane, involved in protein folding. Its regulation is mostly unknown. We addressed both the functionality of two hypoxia-response elements (HREs) within the promoter, GPx8 HRE1 and GPx8 HRE2, and the GPx8 physiological role. In HeLa cells, treatment with HIFα stabilizers, such as diethyl succinate (DES) or 2-2'-bipyridyl (BP), induces GPx8 expression at both mRNA and protein level. Luciferase activity of pGL3(GPx8wt), containing a fragment of the GPx8 promoter including the two HREs, is also induced by DES/BP or by overexpressing either individual HIFα subunit. Mutating GPx8 HRE1 within pGL3(GPx8wt) resulted in a significantly higher inhibition of luciferase activity than mutating GPx8 HRE2. Electrophoretic mobility-shift assay showed that both HREs exhibit enhanced binding to a nuclear extract from DES/BP-treated cells, with stronger binding by GPx8 HRE1. In DES-treated cells transfected with pGL3(GPx8wt) or mutants thereof, silencing of HIF2α, but not HIF1α, abolishes luciferase activity. Thus GPx8 is a novel HIF target preferentially responding to HIF2α binding at its two novel functional GPx8 HREs, with GPx8 HRE1 playing the major role. Fibroblast growth factor (FGF) treatment increases GPx8 mRNA expression, and reporter gene experiments indicate that induction occurs via HIF. Comparing the effects of depleting GPx8 on the downstream effectors of FGF or insulin signaling revealed that absence of GPx8 results in a 16- or 12-fold increase in phosphorylated ERK1/2 by FGF or insulin treatment, respectively. Furthermore, in GPx8-depleted cells, phosphorylation of AKT by insulin treatment increases 2.5-fold. We suggest that induction of GPx8 expression by HIF slows down proliferative signaling during hypoxia and/or growth stimulation through receptor tyrosine kinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2014.12.020 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Gastrointestinal Surgery, Third Affiliated Hospital of Soochow University, Changzhou, China.
Gastric and colorectal cancers are common malignancies with high incidence and mortality worldwide. Early detection and individualized treatment are crucial to improving patient outcomes. Glutathione peroxidase-8 (GPX8), a member of the glutathione peroxidase family, emerges as a potential target for intervention in the treatment of various cancers.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Biology, Howard University, Washington, DC 20059, USA.
Somatic and genetic mutations in glutathione peroxidases (GPxs), including GPx7 and GPx8, have been linked to intellectual disability, microcephaly, and various tumors. GPx7 and GPx8 evolved the latest among the GPx enzymes and are present in the endoplasmic reticulum. Although lacking a glutathione binding domain, GPx7 and GPx8 possess peroxidase activity that helps the body respond to cellular stress.
View Article and Find Full Text PDFHum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
Phytomedicine
November 2024
Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310000, PR China; Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, PR China. Electronic address:
BMC Genomics
May 2024
Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
Background: Conducting genome-wide association studies (GWAS) for reproductive traits in Hanwoo cattle, including age at first calving (AFC), calving interval (CI), gestation length (GL), and number of artificial inseminations per conception (NAIPC), is of paramount significance. These analyses provided a thorough exploration of the genetic basis of these traits, facilitating the identification of key markers for targeted trait improvement. Breeders can optimize their selection strategies, leading to more efficient and sustainable breeding programs, by incorporating genetic insights.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!