A set of genes isolated from Saccharomyces cerevisiae showed increased transcript levels after yeast had been exposed to ultraviolet (UV) light or 4-nitroquinoline-1-oxide (4NQO). Included among these DNA damage responsive (DDR) genes were members of the Ty retrotransposon family of yeast. Northern hybridization analysis indicated that maximal levels of a 5.6 kb transcript encoded by the Ty elements accumulated in cells after 4 to 6 h of exposure to 4NQO. The induced levels of transcripts varied from two- to tenfold for different Ty probes although similar kinetics and dose responses were observed for transcripts hybridizing to the different Ty family members. Pulse labeling experiments suggested that the accumulation of Ty transcripts was due, in part, to an increased rate of Ty message synthesis. Transposition of Ty elements to two target loci encoding distinct alcohol dehydrogenase enzymes, ADH2 and ADH4, was examined in cells exposed to increasing doses of UV light or 4NQO. The frequency of Ty insertion into these genetic regions following DNA damaging treatments increased by as much as 17-fold compared with untreated cells. These results provide direct evidence that transposable elements can be activated by physical and chemical mutagens/carcinogens and that transpositional mutagenesis is induced by these agents in S. cerevisiae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00332411DOI Listing

Publication Analysis

Top Keywords

dna damage
8
damage activates
4
activates transcription
4
transcription transposition
4
transposition yeast
4
yeast retrotransposons
4
retrotransposons set
4
set genes
4
genes isolated
4
isolated saccharomyces
4

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!