Effects of mesenchymal stem cell therapy, in association with pharmacologically active microcarriers releasing VEGF, in an ischaemic stroke model in the rat.

Acta Biomater

CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Bd Henri Becquerel, BP5229, F-14074 Caen cedex, France; Normandie Univ, F-14032 Caen cedex, France.

Published: March 2015

Few effective therapeutic interventions are available to limit brain damage and functional deficits after ischaemic stroke. Within this context, mesenchymal stem cell (MSC) therapy carries minimal risks while remaining efficacious through the secretion of trophic, protective, neurogenic and angiogenic factors. The limited survival rate of MSCs restricts their beneficial effects. The usefulness of a three-dimensional support, such as a pharmacologically active microcarrier (PAM), on the survival of MSCs during hypoxia has been shown in vitro, especially when the PAMs were loaded with vascular endothelial growth factor (VEGF). In the present study, the effect of MSCs attached to laminin-PAMs (LM-PAMs), releasing VEGF or not, was evaluated in vivo in a model of transient stroke. The parameters assessed were infarct volume, functional recovery and endogenous cellular reactions. LM-PAMs induced the expression of neuronal markers by MSCs both in vitro and in vivo. Moreover, the prolonged release of VEGF increased angiogenesis around the site of implantation of the LM-PAMs and facilitated the migration of immature neurons towards the ischaemic tissue. Nonetheless, MSCs/LM-PAMs-VEGF failed to improve sensorimotor functions. The use of LM-PAMs to convey MSCs and to deliver growth factors could be an effective strategy to repair the brain damage caused by a stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2014.12.017DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cell
8
pharmacologically active
8
releasing vegf
8
ischaemic stroke
8
brain damage
8
mscs
5
effects mesenchymal
4
cell therapy
4
therapy association
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!