The effects of halogen and solvent on the conformation and NH stretching of 1,1-dihalogeno-heptan-1-amines [CH3(CH2)5CX2NH2; X=F, Cl or Br] were investigated using the density functional theory method. The functional used was B3LYP employing the 6-31++G(d,p) basis set for all atoms. Computations were carried out for ten possible conformational isomers of the compounds, in the gas phase and both in a non-polar solvent (benzene) and in a polar solvent (methanol). This research work indicates that both the halogen and the medium affect conformational preference, geometrical parameters and NH vibrational frequency. The findings of this work can be useful to those systems involving changes in the conformations analogous to the compounds studied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.11.092DOI Listing

Publication Analysis

Top Keywords

conformation stretching
8
x=f br]
8
halogen solvent
8
stretching 11-dihalogenoheptan-1-amines
4
11-dihalogenoheptan-1-amines [ch₃ch₂₅cx₂nh₂
4
[ch₃ch₂₅cx₂nh₂ x=f
4
br] halogen
4
solvent
4
solvent effects
4
effects effects
4

Similar Publications

Polydopamine-assisted ion-mediated hyaluronic acid grafting for effective construction of hemocompatible platform with cancer cell recognition.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China. Electronic address:

Surfaces capable of specific biomolecule recognition are essential for cancer theranostics, biosensing, and tissue engineering. However, current grafting methods, critical for dictating the recognition efficiency and biocompatibility of biomaterials, especially hydrophilic polymers, struggle to balance high grafting density with ease of implementation. In pursuit of a simple, effective, and versatile solution, we introduced a polydopamine (PDA)-assisted Ca-mediated grafting strategy using hyaluronic acid (HA) as a model material.

View Article and Find Full Text PDF

Structural determinants of peanut induced anaphylaxis.

J Allergy Clin Immunol

January 2025

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN. Electronic address:

Background: Human monoclonal IgE antibodies recognizing peanut allergens have recently become available, but we lack a detailed understanding of how these IgEs target allergens.

Objective: To determine the molecular details of the antibody-allergen interaction for a panel of clinically important human IgE monoclonal antibodies and to develop strategies to disrupt disease causing antibody-allergen interactions.

Methods: We identified candidates from a panel of epitope binned human IgE monoclonals that recognize two important and homologous peanut allergens, Ara h 2 and Ara h 6.

View Article and Find Full Text PDF

Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores.

Talanta

January 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K)-responsive nanoparticles gated with K-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K-responsive polymers, the grafted gates based on these polymers could recognize high K concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!