Sex differences in the relationship of IL-6 signaling to cancer cachexia progression.

Biochim Biophys Acta

Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA. Electronic address:

Published: May 2015

A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372501PMC
http://dx.doi.org/10.1016/j.bbadis.2014.12.015DOI Listing

Publication Analysis

Top Keywords

female apcmin/+
24
cachexia progression
16
apcmin/+ mice
16
cancer cachexia
12
apcmin/+ mouse
12
circulating il-6
12
mrna expression
12
cachexia
11
il-6
10
relationship il-6
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!