Neuroglobin (Ngb) is a six-coordinate globin that can catalyze the reduction of nitrite to nitric oxide. Although this reaction is common to heme proteins, the molecular interactions in the heme pocket that regulate this reaction are largely unknown. We have shown that the H64L Ngb mutation increases the rate of nitrite reduction by 2000-fold compared to that of wild-type Ngb [Tiso, M., et al. (2011) J. Biol. Chem. 286, 18277-18289]. Here we explore the effect of distal heme pocket mutations on nitrite reduction. For this purpose, we have generated mutations of Ngb residues Phe28(B10), His64(E7), and Val68(E11). Our results indicate a dichotomy in the reactivity of deoxy five- and six-coordinate globins toward nitrite. In hemoglobin and myoglobin, there is a correlation between faster rates and more negative potentials. However, in Ngb, reaction rates are apparently related to the distal pocket volume, and redox potential shows a poor relationship with the rate constants. This suggests a relationship between the nitrite reduction rate and heme accessibility in Ngb, particularly marked for His64(E7) mutants. In five-coordinate globins, His(E7) facilitates nitrite reduction, likely through proton donation. Conversely, in Ngb, the reduction mechanism does not rely on the delivery of a proton from the histidine side chain, as His64 mutants show the fastest reduction rates. In fact, the rate observed for H64A Ngb (1120 M(-1) s(-1)) is to the best of our knowledge the fastest reported for a heme nitrite reductase. These differences may be related to a differential stabilization of the iron-nitrite complexes in five- and six-coordinate globins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410703 | PMC |
http://dx.doi.org/10.1021/bi501196k | DOI Listing |
Water Res X
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (NO) emission are unclarified, which could greatly offset the CO sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO-N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and NO emission originated from intracellular NO build-up.
View Article and Find Full Text PDFACS ES T Water
January 2025
Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
Wet chemical sensors autonomously sample and analyze water using chemical assays. Their internal fluidics are not susceptible to biofouling (the undesirable accumulation of microorganisms, algae, and animals in natural waters) due to the harsh chemical environment and dark conditions; however, the sample intake and filter are potentially susceptible. This paper describes the use of copper intake filters, incorporated to prevent fouling, on two different wet chemical nitrate sensors that each use different variants of the Griess assay (in particular, different nitrate reduction steps) to quantify nitrate concentrations.
View Article and Find Full Text PDFSci Total Environ
January 2025
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada. Electronic address:
Upgrading wastewater treatment plants (WWTPs) is a global practice for achieving increasingly stringent nutrient discharge objectives set by governments to accommodate population growth and reduce surface water pollution. However, associated downstream improvements in nutrient conditions are difficult to determine in nearshore regions of large aquatic ecosystems due to complex biophysical processes. We conducted a nine-year water quality study and analyzed the data using linear mixed models (LMMs) within a Before-After-Control-Impact (BACI) framework to assess effects of an upgrade to the Duffin Creek Water Pollution Control Plant (DCWPCP) on surface water nutrient conditions and proliferation of nuisance benthic algae (Cladophora glomerata) in nearshore Lake Ontario.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!