Contextuality is a fundamental property of quantum theory and a critical resource for quantum computation. Here, we experimentally observe the arguably cleanest form of contextuality in quantum theory [A. Cabello et al., Phys. Rev. Lett. 111, 180404 (2013)] by implementing a novel method for performing two sequential measurements on heralded photons. This method opens the door to a variety of fundamental experiments and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.250403DOI Listing

Publication Analysis

Top Keywords

quantum theory
8
experimental observation
4
observation hardy-like
4
quantum
4
hardy-like quantum
4
quantum contextuality
4
contextuality contextuality
4
contextuality fundamental
4
fundamental property
4
property quantum
4

Similar Publications

This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.

View Article and Find Full Text PDF

We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) * tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN * TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN * TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points.

View Article and Find Full Text PDF

In this study, we report the first example of acyclic (amino)(N-pyridinium)carbenoid gold(III) complexes synthesized via a coupling reaction between 2-pyridylselenyl chloride and Au(I)-bound isonitriles. The reaction involves an initial oxidative addition of the Se-Cl moiety to Au(I), followed by the nucleophilic addition of the pyridine fragment to the isonitrile's C≡N bond, furnishing a metallacycle. Importantly, this is the first example of the pyridine acting as a nucleophile towards metal-bound isonitriles.

View Article and Find Full Text PDF

The thermoelectric properties of hybrid systems based on a single-level quantum dot coupled to a normal-metal/half-metallic lead and attached to a topological superconductor wire are investigated. The topological superconductor wire is modeled by a spinless p-wave superconductor which hosts both a Majorana bound state at its extremity and above gap quasiparticle excitations. The main interest of our investigation is to study the interplay of sub-gap and single-particle tunneling processes and their contributions to the thermoelectric response of the considered system.

View Article and Find Full Text PDF

In silico and in vitro assessments of the mutagenicity of the azilsartan photoproduct.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Research & Development, Kongo Chemical Co., Ltd, Himata, Toyama 9300912, Japan.

Photodegradation of azilsartan yields a phenanthridine derivative (APP). We suspected that APP could be a DNA-reactive substance, since many phenanthridine derivatives are mutagenic. In silico quantitative structure-activity relationship analysis indicated potential mutagenicity of APP, due to DNA reactivity at the 6-aminophenanthridine moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!